LEUKEMIA

 ∞

no disclosures

ABNORMALITIES OF CELLULAR PROLIFERATION IN AL

	Normal	Leukemic	
Stem Cells	Normal	Abnormal	
Maturation	Synchronous with proliferation; terminates division	Asynchronous Does not terminate division	
Feedback	Controls production	Absent or ineffective	
Steady State	Yes	No	
_ .			
Release	Orderly	Random	

LEUKEMIA CLASSIFICATION

ACUTE : LYMPHOCYTIC NONLYMPHOCYTIC CHRONIC: LYMPHOCYTIC MYELOGENOUS

ACUTE LEUKEMIA

 ∞

A DIVERSE GROUP OF NEOPLASMS ARISING FROM TRANSFORMATION OF UNCOMMITTED OR PARTIALLY COMMITTED HEMATOPOIETIC STEM CELLS

ACUTE LEUKEMIA PATHOGENESIS

- Leukemic cell abnormalities: cytogenetic abnormality leading to clonal proliferation of leukemic cell; maturation arrest of leukemic cells
- Leukemic cells inhibit normal cell lines from proliferating leading to : anemia, bleeding, infection; electrolyte imbalance; leukostasis
- Invasive & infiltrative effects

ACUTE LEUKEMIA: PRESENTATION

- Symptoms of only a few weeks duration
- Symptoms reflect bone marrow failure +/- involvement of extramedullary sites
- Fever, documented infections in up to half
- Symptomatic anemia
- May have bleeding, but hemorrhage rare
- Bone pain, fatigue

ACUTE LYMPHOCYTIC LEUKEMIA

- Mainly occurs in children- peak ages: 2-8, >60
- Worse prognosis with: increasing age
- Philadelphia chromosome
- ♦ WBC >30K
- Sex: equal
- Rare in blacks

ALL-PREDISPOSING FACTORS

- Irradiation early in life
- Ataxia telangiectasia
- Mongolism
- Leukemia in family
- Identical twin

ALL FAB CLASSIFICATION

FAB Class	Cell Size	Nucleus	Cytoplasm
L1	Small hoogeneous	Round, occasional cleft or fold; homogeneous, finely dispersed chromatin; nucleoli small or not visible	Usually scanty slight to moderate basophilia
L2	Large heterogeneous	Fine to coarse chromatin; clefts 1 or more nucleoli	Abundant, variable basophilia
L3	Large homogeneous	Oval to round, dense finely stippled chromatin; 1 or more prominent nucleoli	Moderately abundant, intensely basophilic , prominent vacuoles

ACUTE LYMPHOCYTIC LEUKEMIA: PRESENTATION

- Half have hepatomegaly, splenomegaly &/or
 lymphadenopathy
- Mediastinal masses primarily in T cell lineage ALL
- <10% with CNS involvement</p>
- Other sites of extramedullary involvement: testis, retina, skin, any organ infiltrated

ALL: ADDITIONAL CLINICAL FEATURES

- C ALL: most common in children; lymphadenopathy common; gum, skin, mediastinal infiltration uncommon; muramidase staining-low or normal
- T cell ALL: most common in 2nd & 3rd decades; blasts more common in blood; frequent extra medullary disease-CNS, mediastinum
- B cell ALL: no distinct findings; responds poorly to conventional therapy
- Ph-positive ALL: shorter remissions than C ALL

ALL: GOOD PROGNOSTIC FEATURES

- Age less than 35 (best 3-9)
- ♦ WBC < 30,000</p>
- Blasts < 80%</p>
- Early complete remission after start of chemotherapy
- Absence of translocations
- Presence of hyperdiploid state
- CALLA+ phenotype
- Female

DIAGNOSIS

Lymphoblasts seen on blood smear and bone marrow

May be difficult to distinguish from myeloblasts

Flow cytometry helpful in differentiating ALL from AML

Evaluate CSF for CNS involvement

ALL: TREATMENT

- Daunorubicin, Vincristine and Corticosteroids are key drugs in induction
- Maintenance therapy at least 2 years
- CNS Prophylaxis
- Imatinib in Ph+ with chemotherapy
- Radiation in bulky mediastinal disease
- SCT if poor prognostic features or progressive disease

ACUTE NONLYMPHOCYTIC LEUKEMIA

- Group of marrow based malignancies, clinically similar, BUT DISTINCT morphologically, immunophenotypically, and cytogenetically
- Must distinguish from ALL
- More common in adults

AML FAB CLASSIFICATION

FAB Class	Predominant cell type	
M1: undifferentiated myelocytic	Myeloblasts	
M2: myelocytic	Myeloblasts, promyelocytes, myelocytes, blasts	
M3: promyelocytic	Promyelocytes, blasts	
M4: myelomonocytic	Promyelocytes, myelocytes, proonocytes, monocytes, blasts	
M5: monocytic	Monoblasts, myeloblasts	
M6: erythroleukemia	Erythroblasts, myeloblasts	
M7: megakaryocytic leukemia	Abnormal appearing megakaryocytes myeloblasts	

ANLL RISK FACTORS

- Exposure to ionizing radiation
- Exposure to chemicals: benzene, chloramphenicol, phenylbutazone
- Exposure to drugs: alkylating agents and topoisomerase II inhibitors
- Genetic factors: Mongolism, Bloom's syndrome, Fanconi's anemia
- MDS, Myelofibrosis, Polycythemia, CGL

ANLL PROGNOSTIC FACTORS

Worse if

- Age>60
- Poor performance status
- AML secondary to prior chemotherapy or bone marrow dysfunction
- ♦ WBC > 20K

CLINICAL FEATURES

- S & S secondary to anemia, thrombocytopenia, leukopenia or leukocytosis
- Hyperleukocytosis (>100K blasts): most common in hyper granular APL causing obstruction, vascular injury and hypoxia (due to pulmonary congestion) & ischemia increasing risk of stroke
- Coagulation abnormalities: abnormal platelet function; consumption (DIC)-M3>M4 or M5
- Typhilitis-mimics appendicitis
- Metabolic abnormalities: tumor lysis syndrome; renal tubular dysfunction
- Extramedullary : granulocytic sarcoma-M5, soft tissue involvement-skin, gingiva, lungs, lymph nodes(splenomegaly uncommon), CNS: headache, mental status change, nerve palsy

GRANULOCYTIC SARCOMA

ANLL: LABORATORY FEATURES

- Anemia universally present; reticulocyte count low
- Thrombocytopenia nearly always present (decreased production & survival)
- Leukopenia in 20% with absolute neutropenia
- Leukocytosis >50%; myeloblasts almost always present in blood
- Auer rods <10%</p>

AUER RODS

ANLL: BONE MARROW FINDINGS

Blasts

- Decrease in normal blood cell progenitors
- Cytogenetics performed to identify any genetic abnormality diagnostic of a particular FAB class
- Immunophenotyping

ANLL: IMMUNOPHENOTYPE

- May help establish diagnosis, more precise than morphology alone
- Distinguishes ALL from ANLL, identifies subtypes, recognizes biphenotypic
- Characteristic ANNL: CD 13 & 33+
- often CD 11& 14+
- CD34 unfavorable
- Lymphoid markers may be expressed

ANLL: TREATMENT

- Address concurrent medical problems
- Supportive care:
 - -Blood product transfusion
 - -Broad spectrum antibiotics for fever and neutropenia
 - -Antifungal & antiviral therapy
 - -Nutrition

ANLL: THERAPY

- Remission induction: 7+3 regimen: ARA-C + daunorubicin= 60-80%
 CR
- Postremission therapy:
 - -Consolidation with Ara-C
 - -Allogeneic SCT
- APL: ATRA + chemotherapy

CHRONICLYMPHOCYTIC

Most common leukemia in Western world Median age at diagnosis: 65 Median survival: 9 years Advanced disease has increased morbidity and mortality from infection: T cell dysfunction, lack of ability to make |g, results of treatment

CLL: DIAGNOSIS

- Lymphocytosis (ALC> 5000) small, mature lymphocytes
- Bone marrow involvement >30% lymphs
- < 55% atypical/immature lymphoid cells in peripheral blood
- Clonal expansion of abnormal B lymphs
 B-cell surface ags (CD 5, 19, 20, 23)

CLL: CLINICAL COURSE

Incidental finding of lymphocytosis

Asymptomatic at time of diagnosis and for a prolonged period of time

CLCLINICALCOURSE

- Progressive bone marrow impairment • Progressive neutropenia and hypogammaglobulinemia increasing risk of infection
- Autoimmune phenomena
 Richter's transformation

CLL: AUTOIMMUNE COMPLICATIONS

Coombs' + hemolytic anemia in 15%
ITP
Pure red cell aplasía
Granulocytopenía

CLL: RAISTAGING

CLL: POOR PROGNOSIS

Advanced stage at diagnosis
Short lymphocyte doubling time (6 mos)
Diffuse pattern of marrow infiltration
Advanced age/male
17p or 11q deletion
High serum levels of B2 microglobulin and CD23
CLL-PLL
Richter's syndrome

CLETREATMENT

Incurable
Observation is appropriate for early stage or asymptomatic CLL
No proven advantage to early chemotherapy if asymptomatic

CLL: INDICATIONS FOR TREATMENT

B Symptoms secondary to CLL: weight loss >10%, night sweats, fever
Progressive marrow failure
Massive splenomegaly
Massive lymphadenopathy

CLL: INDICATIONS FOR TREATMENT

- Progressive lymphocytosis, >50% increase over 2 mos or lymphocyte doubling time <6 mos
- Ríchter's syndrome-transformation from low to high grade lymphocytic malignancy
 Hemolytic anemía
 ITP

CLL: TREATMENT

Alkylating agents: bendamustine, chlorambucil
cyclophosphamide

Cortícosteroíds

• Puríne analogs: fludarabine

- cladríbíne, pentostatín
- Monoclonal abs: Rítuxímab, Alemtuzumab

HARYCELLEUKEMIA

Rare B-cell leukemía
Medían age of onset: 55
Strong male predomínance
Presents with pancytopenía and massíve splenomegaly
Characterístic "dry tap" bone marrow due to hypercellularity

HAIRY CELL LEUKEMIA

HARYCELLEUKEMIA

TRAP +
Treatment with 2-CDA (cladribine) or Pentostatin induces complete remission in most

CHRONIC MYELOGENOUS LEUKEMIA

- Clonal myeloprolíferative disorder of pluripotent stem cells affecting all cell lines
- Cytogenetic hallmark: Philadelphia chromosome (9;22)
- Molecular hallmark: BCR/ABL
- 7-15% adult leukemías
- Medían age: 45-55; 20-30% >60

CML: PRESENTATION

- 85% in chronic phase at diagnosis
 5% Ph negative
- •Symptoms:
- Most asymptomatic, only leukocytosis
- -LUQ discomfort and early satiety secondary to splenomegaly
- Unusual infections

PHILADELPHIACHROMOSONE

PHILADELPHIACHROMOSONE

Translocation 9;22 = BCR-ABL rearrangement Leukemia phenotype Incidence CML 95% ALL 25-30% adult 5% children AML 1-2%

CML Phases

	Chronic	Accelerated	Blastíc
Past	3-5 years	12-18 months	3-9 months
Present	25+ years	4-5 years	6-12 months
	Asympto- matíc	Blasts >/= 15% Bl+Pros >29% Basophils>19%	Blasts >29%
		Platelets <100K Clonal evolution	extrmedullary dísease with localízed ímmature blasts

CML WORK-UP

Physical exam: performance status, splenomegaly CBC, diff, chem pro Bone Marrow Cytogenetics

CML: CURRENTTREATMENT RECOMMENDATIONS

Frontline: Imatinib, Nilotinib, Dasatinib Imatinib failure: nilotinib, dasatinib, bosutinib Allogeneic SCT

MYELOPROLIFERATIVE DISORDERS

no disclosures

PRIMARY MYELOFIBROSIS

- Progressive generalized reactive fibrosis of bone marrow
- Associated development of hemopoiesis in spleen and liver (myeloid metaplasia)

Primary Myelofibrosis Pathogenesis

- Megakaryocytes release platelet derived growth factor and other cytokines to stimulate fibroblasts
- JAK-2 mutation positive in 50%
- Nonspecific cytogenetic abnormalities in 50%
 Transformation to acute leukemia 10-20%

Primary Myelofibrosis

Symptoms

- Weakness
- Night sweats, weight loss
- Signs
 - Massive hepatosplenomegaly
 - Bone marrow failure
 - Portal hypertension
 - Pulmonary hypertension

Primary Myelofibrosis Lab Findings

- Anemia: tear-drop erythrocytes
- Initial elevation, then decline in WBC & platelet count
- JAK-2 positive in 50%
- Bone marrow fibrosis with increased megakaryocytes

Etiologies of Myelofibrosis

- Infections, ie-TB, osteomyelitis
- Hematological malignancies
- Metastatic cancer, esp breast & prostate
- High exposure to radiation
- Benzene toxicity
- Fluorine toxicity
- Paget's disease-focal fibrosis
- Osteopetrosis

Primary Myelofibrosis Treatment

- Hydroxyurea
- Transfusion as indicated
- Splenic irradiation or splenectomy
- JAK-2 inhibitors
- Erthropoietin
- Androgen therapy

Polycythemia vera

- Clinical Features
 - Symptoms: headaches, dyspnea, blurred vision, night sweats, pruritus (esp after hot shower)
 - Signs: plethoric facies, retinal venous engorgement, splenomegaly, hypertension, gout, thrombosis (aterial or venous), hemorrhage (GI, uterine, cerebral)

Polycythemia Vera

- Laboratory findings
 - Elevated hemoglobin and hematocrit
 - RBC volume increased
 - Leukocytosis-50%
 - Thrombocytosis-50%
 - Hypercellular bone marrow
 - Low erythropoietin
 - JAK-2 positive-95%

Polycythemia Vera

- Diagnosis
 - JAK-2 positive-no further work-up needed
 - JAK-2 negative
 - No cause of secondary erythrocytosis
 - Splenomegaly
 - Acquired genetic abnormality
 - Thrombocytosis +/- leukocytosis

Etiologies of Secondary Polycythemia

- Tumor related increase in erythropoietin
 - Renal cell cancer
 - Hepatocellular cancer
 - Uterine fibroids
- Hypoxemia
 - · COPD
 - Sleep apnea
 - Massive obesity
 - High altitude
- Increased carboxyhemoglobin levels
 - Smoking
 - Chronic carbon monoxide exposure
- Hemoglobinopathy

Differential Diagnosis of Polycythemia

- Step 1
 - H&P, CBC w/diff, ferritin, renal & liver function tests, PFTs, ABG w/carboxyhemoglobin, erythropoietin
 - JAK-2: if negative proceed to step 2
- Step 2
 - Bone marrow biopsy w/cytogenetics
 - Abdominal US
- Step 3
 - O2 dissociation: heart & lung evaluation

Therapy of Polycythemia

- Phlebotomy to Hct < 45%
 Hydrea for platelet count > 400,000
 Aspirin 81 mg daily
- JAK-2 inhibitors

Thrombocytosis

Reactive:

- Hemorrhage
- Trauma
- Postoperative
- Chronic iron deficiency
- Malignancy
- Chronic infections
- Connective tissue diseases
- Postsplenectomy

Endogenous:

Essential thrombocythemia

Can also be seen in:

- Polycythemia vera
- Myelofibrosis
- CML

Essential thrombocythemia

- Clinical findings
 - Asymptomatic
 - Thrombosis (venous or arterial)
 - Hemorrhage (abnormal platelet function)
 - Splenomegaly
 - Erythromelalgia: burning sensation of hands & feet

Essential Thrombocythemia

- Laboratory Findings
 - Platelet count >400,000
 - Abnormal large platelets and megakaryocytic fragments on peripheral smear
 - JAK-2 positive-90%
 - Bone marrow with abnormal megakaryocytes
 - Platelet function studies abnormal
 - Treatment: same as for polycythemia