

Clinical Basis of the Immune Response and the Complement Cascade

Bryan L. Martin, DO, MMAS, FACAAI, FAAAAI, FACOI, FACP Associate Dean, Graduate Medical Education/DIO Associate Medical Director, University Hospital Program Director, Allergy Immunology Professor of Clinical Medicine and Pediatrics

Disclosures

None

Introduction

Immunology is felt to be difficult to learn

- There are too many details that you can get bogged down in
- There's always an exception to every rule
- We still don't really know that much: but what we know doubles every year
- The immune response: a system (or two) with a number of players working together as a team.
- All this means: A great source for questions

Immunity Innate & Adaptive

- First line of defense
- Nonspecific
- Rapid onset
- No protective immunity
- No memory
- Phagocyte- mediated

- Activated
- Very specific
- Slower
- Protective immunity possible
- Memory possible
- Lymphocytemediated

Innate immune system

- Immune system which all animals have "naturally" and always ready
- Components
 - Complement
 - Critical role against bacteria, fungi and virus
 - Phagocytes
 - Macrophages, neutrophils, NK cells

(Physical barriers also are often thought of as part of the innate immune system)

So a you got a splinter?

- Breaks the first line of defense
- Splinter is covered with bacteria
- What happens next?
 - Innate immune system kicks in <u>fast</u>, but is not specific
 - Bacteria give off signals that attract an important player in innate system – the <u>macrophage</u>

- Macrophage is waiting in tissue under the skin
- Macrophage engulfs invading bacterium and destroys it
- Process is called "phagocytosis"
- "Macro" means big and "phage" means eat so it's a "big eater"
- Macrophage is a "professional phagocyte" THE DHO STATE UNIVERSIT

Macrophage

- When macrophages activate, they make signaling proteins called <u>cytokines</u>
 - Cytokines signal to other immune cells that there's a problem at a particular location
 - Attract other "professional phagocytes" from blood to infected tissue to help out
 - Mainly <u>neutrophils</u>

Cytokine Communication: More than Alphabet Soup

- Cell communication via released peptides
- Low concentration
- Work through high affinity receptors
 - Can autostimulate
- Wide range of cellular effects
- Macrophages release cytokines to begin inflammatory response

Macrophage cytokine release

- IL-1: Activates vascular endothelium
- IL-8: Chemotatic factor for neutrophils
- TNF-alpha: Activates vascular endothelium & increases vascular permeability
- IL-6: Lymphocyte activation, increased antibody production
- IL-12: Activates NK cells: Induces differentiation of CD4+ T cells into TH1 cells

<u>Cell Adhesion Molecules: Molecular</u> Velcro

- Cell surface molecules with matching ligands on other cells
- Allow cell-to-cell binding for communication and homing
- Expression of CAMs variable and under complex control
- Example: Intercellular adhesion molecule-1 (ICAM-1) on APC's binding to lymphocyte function-associated antigen-1 (LFA-1) on T-cells

Selectin-mediated adhesion to leukocyte sialyl-Lewis^x is weak, and allows leukocytes to roll along the vascular endothelial surface

Figure 2-44 part 2 of 3 Immunobiology, 6/e. (© Garland Science 2005)

Macrophage – summary

- Serve as sentinels to guard a large perimeter
- Recognizes standard invaders (bacteria) so response happens very fast
- When there's an infection, they begin by ingesting and destroying the organism and using cytokines to create an inflammatory response.
- IL-1, TNF-alpha and IL-8 magnify the innate immune response
- Antigen Presenting Cell (APC): the activated macrophage may become an APC and "home" to the lymph node (more on this later)

Other cells of innate immune system

Professional phagocytes

- Macrophage
- Neutrophil
- Eosinophil, Basophil, Mast Cell
 - Killers of parasites
- Natural Killer Cell
 - killers of host cells "gone bad"
 - Protects against cancers and viruses

What if bacteria escape into bloodstream?

- Another part of <u>innate</u> system kicks in
- <u>Complement</u> proteins are always present in blood
- "Naturally" recognize standard foreign invaders like bacteria
 - Punch holes in invaders
 - Attach "tags" onto invaders so can be easily phagocytosed – called <u>opsonization</u> (which means to "prepare for eating")

Complement Proteins

- Membrane Attack Complex: can cause lysis of microbes
- Allows more efficient phagocytosis

Three Complement Pathways

Classical Pathway

- C1, C4, C2, C3
- Antigen-antibody complexes
- IgM (most effective) and IgG bind complement

Mannan-binding Lectin Pathway

- Mannan-binding lectin binds mannose on pathogen surfaces
- MBL, MASP, C4, C2, C3
 - MASP (mannan-binding lectin-associated serum protease)

Alternative pathway

- Binds to pathogen surface
- Amplifies effects of the Classical Pathway
- C3b, B, D, C3
- Although they initiate differently ALL pathways converge at C3 convertase

ABC's of complement

- A is for anaphylatoxin (smaller cleavage fragment)
 - C3a, C4a and C5a are peptide mediators of local inflammation
 - C5a is the most active
 - C4a is relatively weak
- B is for binding (larger cleavage fragment)
 - C3b binds to complement receptors on phagocytes and allows for effective opsonization of pathogens
 - C5b associates with the bacterial membrane and forms membrane attack Complex
 - C4b is a weak opsonin

Adaptive Immune Response

- Once immune system has been active for a little time, it learns from the battle and fine tunes its response: the adaptive immune response is "turned on"
- The fine tuned response is more specifically targeted against particular invaders and more effective
- Called <u>adaptive immune system</u> because it "adapts" to the specific invader
- Hallmark is <u>specificity</u>

Cells of the adaptive immune system

- Cell-mediated immunity
 - T cells
 - T helper cells
 - T killer cells
 - T regulatory cells
 - Viral, fungal, intracellular infections
- Humoral immunity
 - B cells
 - Antibodies
 - Extracellular bacterial infections

Immune system Components Specific: Lymphocytes

- Recognition: Antigen Specific
 - B-cell
 - T-cell
- Each receptor on cell is identical
- Need 10-100 million different and unique lymphocytes

Lymphocytes

- Unique antigen receptor constructed early
- Selected and activated by non-self proteins
- Clones persist (memory cells)
- Lymphocytes with self-recognizing receptors are culled

<u>B-cells</u>

Mature in <u>b</u>one marrow
Lymphoid follicle
Antigen receptor: Immunoglobulin molecule

<u>T-cells</u>

- Mature in <u>thymus</u>
- Paracortical area
- Antigen receptor:
 - T-cell receptor

Ticell

Adaptive Immunity Antigen Receptors

Antigen stimulation of T cell

- Specific T cell proliferates in response to its matching antigen...but only when antigen is "presented" properly
- This is done by Antigen Presenting Cells (APCs)
 - Dendritic cells, Macrophages, B cells
- APCs phagocytose antigen, then "present" to T cell in lymphoid organs.

©James A. Sullivan

www.cellsalive.com

Antigen capture and presentation

Adaptive Immunity "Professional" Antigen Presenting Cells

- Dendritic cells, macrophages, B-cells
- Efficiently process antigens
- Antigen peptides fit in MHC cleft
- MHC:peptide complex to cell surface
- Provide costimulatory 2nd signal

MHC Molecules

- Function: Bind processed antigen and transport to cell surface
- MHC I:
 - All nucleated cells
 - Process Ag from cytosolic compartment
 - Present to CD8+ cytotoxic T-cells
 - HLA-A, B, C
- MHC II:
 - Dendritic cells, macrophages, B-cells
 - Process Ag from vesicular compartment
 - Present to CD4+ helper T-cells
 - HLA-DR, DP, DQ

How are <u>specific</u> T cells produced?

- Like antibodies, human starts off with about 100 million different kinds of T cells
- Mature in thymus (thus T cell) where they undergo positive and negative selection
 - Don't recognize self: must be destroyed
 - High affinity for self (attack self): must be destroyed
- When pathogen stimulates one specific T cell, then just that one clone proliferates (clonal selection)
- For selection:
 - Approximately 1 trillion T cells in body.
 - 1 trillion T cells/100 million specificity = 10 thousand T cells/specificity

So now that specific T cells proliferate, what do they do?

- CD8+ Killer (or cytotoxic) T cells
 - Kill virus-infected host cell
 - So invading virus can be destroyed even after inside cell!
- CD4+ Helper T cells
 - Direct immune response by sending out various signals (cytokines) – "Quarterback" of immune team
 - "Help" other cells do their thing
- Regulatory T cells
 - Involved in suppressing other immune cells

CD8+ Cytotoxic T-cell

- Directly cytotoxic to cells via binding to <u>Ag:MHC I</u> complex
- Cytosolic antigens (e.g., viruses)
- Induces apoptosis
- Cytotoxicity is specific and directional
- Cytotoxins include:
 - Perforin, granzymes
- Also produces cytokines
 IFN-γ, TNF

CD4+ Th1/Th2 Paradigm

CD4+ T cell Binds to APCs via <u>Ag:MHC II</u> complex

CD4+ Helper T-Cells: Th1/Th2 Paradigm

Th1 (type 1)

- IL-2, TNF, IFN-γ
- Activate macrophages and CTL's for intracellular pathogen killing and cytotoxicity
- Facilitate cell-mediated immunity
- Inhibit Th2 cell proliferation

CD4+ Helper T-Cells: Th1/Th2 Paradigm

- Th2 (type 2)
 - L-4, 5, 10
 - Activate B cells and antibody production to neutralize extracellular pathogens & toxins
 - Facilitate humoral immunity
 - Inhibit Th1 cell proliferation

What Determines Th1 vs. Th2 Response?

- Type of pathogen
- Innate immune response to it
 - Macrophages, NK cells release IL-12, IFN-γ: TH1
 - Mast cells, basophils, $\gamma\delta$ T cells release IL-4: TH2
- Host's immune constitution
- Density of Ag presented on APC
 - High density Th1
 - Low density Th2

Where does adaptive immune response occur in the body?

- Only a few T cells and B cells specific for a particular antigen
- So how does antigen and matching antibody ever meet to stimulate specific response?
- Meet in <u>secondary lymphoid organs</u>
 Lymph nodes, spleen, tonsils, appendix ("Primary" = bone marrow and thymus)

Lymph nodes are adaptive immunity meeting areas

- pathogens in tissue drain with lymph fluid to lymph nodes
- Activated APCs "home" to lymph node
- Meanwhile, T cells and B cells circulate from node to node looking for match
- Coming together in lymph nodes makes matching much more likely
- This is why lymph nodes get swollen

LYMPH NODE

Stained with haematoxylin and eosin

- 1 cortex
- 2 paracortical zone
- 3 medulla
- 4 medullary cords
- 5 lymphoid follicle of the cortex
- 6 capsule
- 7 subcapsular sinus
- 8 cortical sinus
- 9 medullary sinus

Humoral Immune Response

- <u>B cells</u>, when stimulated, turn into antibody factories called <u>plasma cells</u>
- Takes about a week to start making antibody after first exposure to new antigen
- B cells come from bone marrow stem cells

How is <u>specific</u> antibody produced?

- Need about 100 million different kinds of antibodies to bind to every possible pathogen
- Your body actually starts off with that many different specificities of antibody!
- When pathogen (antigen) binds to one specific antibody, then only that antibody clone gets reproduced – <u>clonal selection</u>

Clonal selection

Clonal Selection

- 1950's theory
- Mount an overwhelming immune response
 - When needed
 - Can be "turned on and off"

Antibodies

- Shaped like "Y"
- Two heads specific for particular <u>antigen</u>
- Base determines what class of antibody
- 5 classes (IgG, IgM, IgA, IgE, IgD)
- Class determines how antibody will function

Immunoglobulins

PentamerIgM

Dimer IgA

MonomersIgG, IgE, IgD

What do antibodies do?

- Don't kill anything
- Attach to invader while it is outside a host cell and "tag" it for phagocytosis (opsonization)
- Can also "neutralize" antigen while it is outside a host cell so that it can't function properly

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Cell-mediated immunity (T cells)

- There's a flaw in antibody defenses against viruses as opposed to most bacteria
- Once virus gets inside host cell, antibodies can't get to it
- T cells are the solution

Cells of the immune system

hio State University

MEDICAL CENTER

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Adaptive immunity also has memory

- Once invader has been eliminated by adaptive immune response, then most of specific T cells and Plasma cells die
- A few stick around and serve as <u>memory cells</u>
- Next time the same invader comes, adaptive immune system kicks in much faster using memory cells – you're "immune!"

Distinct phases of immune response

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Primary and secondary response

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

What happens for example with a vaccination?

- Foreign "invader"
- Innate immunity
 - Macrophages eat, recruit neutrophils, cause inflammation, triggers adaptive immune system
- Adaptive immunity
 - Dendritic cells phagocytose, present antigen to specific T cells which proliferate and "help"
 - Antigen stimulates specific B cells to produce antibody
 - Since there's nothing to fight, then become "memory cells" you're immune!

Vaccination Response

Innate system directs adaptive system

- Identifies real danger from an invader activates adaptive immunity only when needed
- Directs the kind of response that adaptive immunity will make (e.g. humoral or cellmediated)
- Targets response to particular site
- Provides a lot of the firepower for adaptive immune system (complement and phagocytes)

Immune Response

© Elsevier 2005, Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Questions?

