

2021 ACOI Annual Convention And Scientific Sessions October 27-30

> Challenges and Recent Progress in the Development of Continuous Glucose Monitoring :Closed loop system.

Jeffrey S. Freeman DO FACOI FNLA Professor of Internal Medicine Chairman Division of Endocrinology Philadelphia College of Osteopathic of Osteopathic Medicine

Disclosures

Novo Nordisk – Speaker Honoraria Bayer – Speaker Honoraria

- ▶ 1. Which is true regarding the TSlimx2 with Control IQ?
 - A. only change basal rates
 - B. only change bolus rates
 - C. is recommended in pregnancy
 - D. optional sleep and activity setting *

- Which statement is true?
 - A. Minimed 670 G does not have its own sensor system
 - B. Dexcom G6 requires calibration
- C. Free Style Libre 2 System is approved for ages 4 and higher and has high and low alarms

- 3. Which statement is true?
 - A. Closed loop systems are in development for future insulin delivery
 - B. Closed loop systems are available, but in a very limited application
- C. Closed loop systems are readily available with some restrictions in the general diabetes population *

4. Which statement is true?

The Libre first generation differs from the Libre 2 because:

- A. it measures blood glucose not interstitial glucose
- B. it is 14 day and the Libre 2 is 21 days *
- C. it does not have alarms

5. True or False? According to the Diamond Study there was no difference with glucose variability in the CGM vs SMBG group, but significant difference in Hgb A1C.

Learning Objectives

- Review available diabetes technologies to manage patients with diabetes
- Discuss how CGMs, connected pens, insulin pumps and integrated devices can be applied in the shared clinical-decision making process to better manage patients with diabetes
- Apply diabetes technology skills to patient management.

References

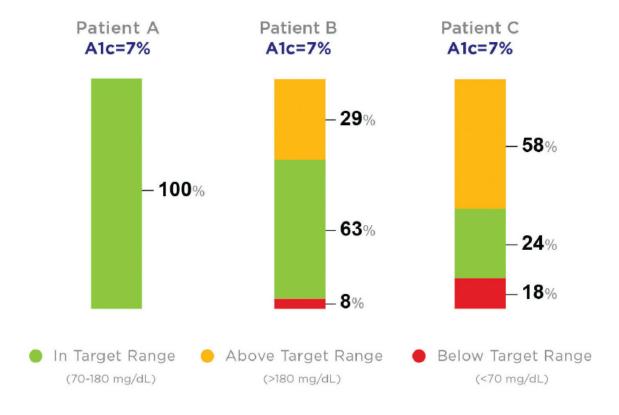
Ajjan R, Slattery D, Wright E. Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners. Adv Ther. 2019 Mar;36(3):579-596. doi: 10.1007/s12325-019-0870-x. Epub 2019 Jan 18. PMID: 30659511; PMCID: PMC6824352.

1. Krakauer M, Botero JF, Lavalle-González FJ, Proietti A, Barbieri DE. A review of flash glucose monitoring in type 2 diabetes. Diabetol Metab Syndr. 2021 Apr 9;13(1):42. doi: 10.1186/s13098-021-00654-3. PMID: 33836819; PMCID: PMC8035716.

Umpierrez GE, Klonoff DC. Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the Hospital. Diabetes Care. 2018 Aug;41(8):1579-1589. doi: 10.2337/dci18-0002. Epub 2018 Jun 23. PMID: 29936424; PMCID: PMC6054505.

Resources

For a copy of these slides, additional diabetes education and resources, please visit https://aace.com/diabetes-technology.


Why Consider Using Continuous Glucose Monitoring (CGM)?

- In 1993 the DCCT established the "A1C" as the gold standard for estimating diabetes complication risk
- Despite the introduction of 18 new therapeutic interventions, only 50% of patients
 are able to achieve their targeted glycemic goals
- Patients are frustrated by glycemic variability caused by lack of insulin secretion and excess excretion of glucagon
- The rate limiting step to diabetes management is hypoglycemia
- Identifying interventions which can add value to A1C interpretation and maintain "in-target" glucose values would improve patient adherence and reduce the occurrence of "dysglycemia"

Not All A1cs Are Created Equal

HbA1c only provides a broad look at a patient's glucose history. Time in Range provides more actionable information than A1c alone and should complement A1c.¹

Law of averages!!

Not actual patient data; for illustrative purposes only.

^{1.} Battelino T, Danne T, Berganstal RM, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. *Diabetes Care*. 2019;42(8):1593-1603.

Value of CGM In Patients With T2DM

- Discover previously unknown hyper and hypoglycemic events
- Measure glycemic control directly rather than via the surrogate metric of A1C
- Observe metrics such as glycemic variability, time spent within, below or above targeted glucose range throughout the day
- Determine the duration and severity of unrecognized hypoglycemia, especially nocturnal
- Provide actionable information derived from the CGM report
- Analyze glucose effects of targeted pharmacologic interventions (both fasting and post-meal glucose values)
- Evaluate the effect of exercise on glycemic control
- Provide behavioral interventions based on real-time glycemic values

Who Benefits From Routine Use Of Continuous CGM?

- ALL patients treated with intensive insulin therapy (MDI or insulin pumps)
- ALL patients with "problematic hypoglycemia" (Frequent, nocturnal, hypoglycemia unawareness)
- Children and adolescents with T1DM
- Pregnant women with either T1DM or T2DM (treated with insulin)
- Patients with gestational diabetes treated with insulin
- Consider CGM for patients with T2DM who are treated with less intensive therapy

CONTINUOUS GLUCOSE MONITORS

ABBOTT FREESTYLE LIBRE SENSOR

DEXCOM G6 SENSOR

GUARDIAN PUMP AND SENSOR

Professional vs Personal CGM

PROFESSIONAL CGM^[a]

- Use in the office
- The CGM device is put on the patient
- Patient comes back later
- Download the information
- Professional CGM is useful for improving glycemic control in a low socioeconomic population with limited access to current technology
 - Can lower A1C 0.8 % with intermittent use
 - Can encourage lifestyle changes and medication adherence

PERSONAL CGM^[a]

- What the patient uses
- Patient uses the information to make decisions on their insulin, when to eat, etc
- Provides alarms for lows and highs
- Can increase engagement in diabetes selfmanagement

CGM technology can be extremely important in lowering

HbA_{1c}

and minimizing hypoglycemia in patients on MDI with $T1D^{[b,c]}$

a. Blevins TC. Professional continuous glucose monitoring in clinical practice 2010. J Diabetes Sci Technol. 2010 Mar 1;4(2):440-56.

Beck RW, Riddlesworth T, et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA. 2017 Jan 24;317(4):371-378.

b. Sulman H, et al. Diabetes 2018 Jul; 67(Supplement 1)

c. Lind M, Polonsky W, Hirsch IB, et al. Continuous Glucose Monitoring vs Conventional Therapy for Glycemic Control in Adults With Type 1 Diabetes Treated With Multiple Daily Insulin Injections: The GOLD Randomized Clinical Trial. JAMA. 2017 Jan 24;317(4):379-387.

From: A review of flash glucose monitoring in type 2 diabetes

Study (population)	Effect of:	HbA1c (%)
Fokkert et al. [<u>20</u>] T1D, n = 1054; T2D, n = 223; Other, n = 88	Before vs. after FGMS use on estimated HbA1c	At baseline: 8.0% (95% CI 7.9–8.1) At 6 months: 7.6% (95% CI 7.5–7.7); P < 0.001 vs. baseline At 12 months: 7.6% (95% CI 7.6–7.7); P < 0.001 vs. baseline
Eeg-Olofsson et al. [<u>21</u>] T1D, n = 8316; T2D, n = 538	Before vs. after FGMS use on HbA1c (method of measurement not specified)	T1D: 8.1% at baseline. Mean change –0.33% (95% CI – 0.36 to – 0.31); <i>P</i> < 0.0001 T2D: 8.6% at baseline. Mean change –0.52% (95% CI – 0.63 to – 0.40); <i>P</i> < 0.0001
Evans et al. [22] Meta-analysis of 29 studies; n = 1723 with T1D or T2D	FGMS use on laboratory HbA1c	In adults at 2–4 months: mean change – 0.56% (95% CI – 0.76 to – 0.36) In children and adolescents at 2–4 months: mean change – 0.54% (95% CI – 0.84 to – 0.23)
Ish-Shalom et al. [<u>23</u>] T1D, n = 6; T2D, n = 25	FGMS use on HbA1c (method of measurement not specified)	In patients with HbA1c \geq 7.5% At 8 weeks: mean change – 1.33 \pm 0.29%; P < 0.0001 At 24 weeks: mean change – 1.21 \pm 0.42%; P = 0.009
Dunn et al. [24] n > 50,000	† Scanning frequency on estimated HbA1c	Highest (48.1 scans/day) vs. lowest (4.4 scans/day) scan rate group: 6.7% (95% CI 6.7–6.8) vs. 8.0% (95% CI 7.9–8.0; P < 0.001
Gomez-Peralta et al. [<u>26</u>] n = 22,949	† Scanning frequency on estimated HbA1c	Highest (39.6 scans/day) vs. lowest (3.9 scans/day) scan rate group: 6.9% (95% CI 6.9–7.0) vs. 8.0% (95% CI 8.0–8.1); P < 0.001
Calliari et al. [27] Brazil: 17,691 readers and 147,166 sensors Worldwide: 688,640 readers and 7,329,052 sensors	† Scanning frequency on estimated HbA1c	Brazil: Highest (43.1 scans/day) vs. lowest (3.6 scans/day) scan rate group: 6.7% (95% CI 6.6–6.8) vs. 7.6% (95% CI 7.4–7.7); P < 0.01 Worldwide: Highest (37.8 scans/day) vs. lowest (3.4 scans/day) scan rate group: 6.7% (95% CI 6.7–6.7) vs. 8.1% (95% CI 8.1–8.2); P < 0.01

GlucoWatch® Biographer First To Receive FDA Approval

Continuous Glucose Monitors

- Interstitial glucose sensor (size of an eyelash) is inserted manually
- Data from the interstitial sensor is <u>transmitted</u> to a "reader", insulin pump or app and displayed to the user
- CGM Available Data:
 - Current glucose level
 - Glucose trends related to meals, exercise, medication, sleep, travel
 - Glucose directional trends
 - Alarms for glucose levels < 70 or > 240 mg/dL

Dexcom 6 Transmitter (battery)

Abbott Freestyle Libre Sensor

Dexcom 6 Sensor

Guardian Medtronic pump and sensor

Unger J, Kushner P, Anderson JE. Practical guidance for using the Freestyle Libre Flash continuous glucose monitoring in primary care. Postgraduate Medicine.

FreeStyle Libre 2 system

- ✓ Continuous glucose monitoring system FDA-cleared for adults and children with diabetes ages 4 years and above
- ✓ Now with optional, real-time glucose alarms that notify you if you go
 too low or too high*
- √ 14-day accuracy¹ for adults and children
- ✓ Easily check your glucose levels with scan instead of a fingerstick†
- ✓ Notifications will only be received when alarms are turned on and the sensor is within 20 feet of the reading device.

Libre 2 iOS app, FDA approved 8.2.2021 with compatible iPhones

How CGM Can Help Reduce Diabetes Management Challenges

Moving beyond A1c

Using a combination of metrics allows for a more complete picture of glucose profile¹

A1c + AGP (Ambulatory Glucose Profile)

Combining each patient's A1c with their ambulatory glucose profile (AGP) uncovers critical daily patterns

TIR (Time in Range) + TBR (Time below range)
Monitoring TIR and TBR glucose variability helps show how
closely readings of an individual patient fall within target
range, or below, in hypoglycemia

Glucose data

Additional access to acute, daily, and long-term (90 days) data allows for more informed treatment decisions

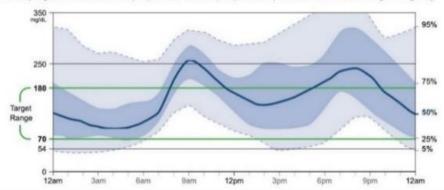
AGP provides a standardized visualization that condenses glucose data generated from GGM over several days or weeks into a single, 24-hour window.

AGP Report

June 13, 2019 - June 26, 2019 (14 days)

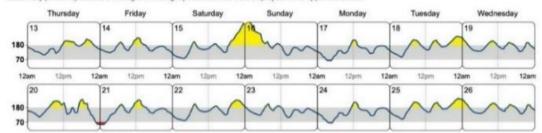
June 13, 2019 – June 26,	2019 14 days	
% Time CGM is Active	99.9%	
Ranges And Targets For	Type 1 or Type 2 Diabete	
Glucose Ranges	Targets % of Readings (Time/Day)	
Target Range 70-180 mg/dL	Greater than 70% (16h 48min)	
Below 70 mg/dL	Less than 4% (58min)	
Below 54 mg/dL	Less than 1% (14min)	
Above 180 mg/dL	Less than 25% (6h)	
Above 250 mg/dL	Less than 5% (1h 12min)	
Each 5% increase in time in ran	ge (70-180 mg/dL) is clinically beneficial.	
Average Glucose	173 mg/s	

Defined as percent coefficient of variation (%CV); target ≤36%


AMBULATORY GLUCOSE PROFILE (AGP)

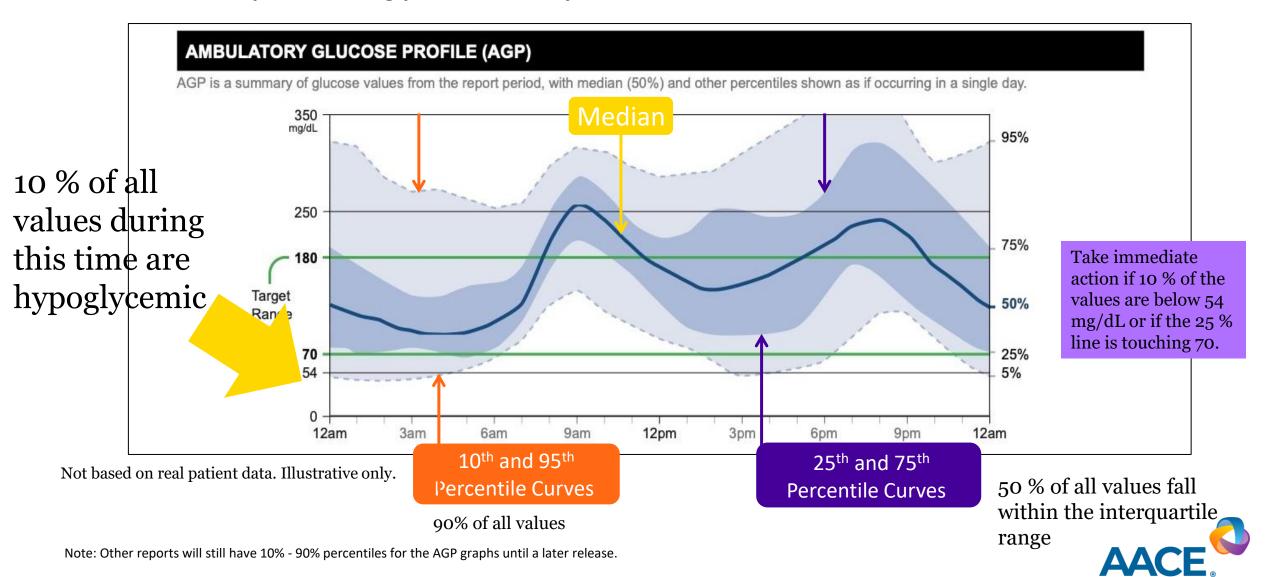
Glucose Management Indicator (GMI)

Glucose Variability


AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.

49.5%

DAILY GLUCOSE PROFILES


Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.

^{1.} Battelino T, Danne T, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019 Aug;42(8):1593-1603.

Ambulatory Glucose Profile (AGP)

Illustrates trends, patterns and glycemic variability

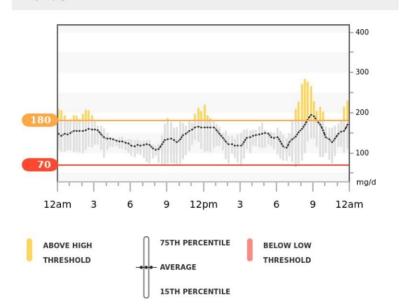
Dexcom G6® CGM

No Fingersticks Required

- No fingerstick calibrations.
- Users can enter optional fingersticks in the case of an inaccurate sensor, however this seems to be discouraged.
- One-button insertion device
- 28% smaller profile transmitter (about two-thirds of the original size)
- 10-day wear time; Mandatory shutoff once the 10-day wear time is up since the CGM is factory-calibrated
- No acetaminophen interference
- The Dexcom G6 CGM transmitter can only be paired with one medical device (either a Dexcom receiver or t:slim X2 Pump) and one consumer device (phone or tablet) at the same time.
- Allows remote viewing of glucose levels, trends and data between the person with diabetes and their spouse, grandparent or other loved ones from an Android, Apple iPhone® or iPod touch®**
- Approved for ages 2 years and older.

**check DexCom website for phone compatibility.

Clarity Report

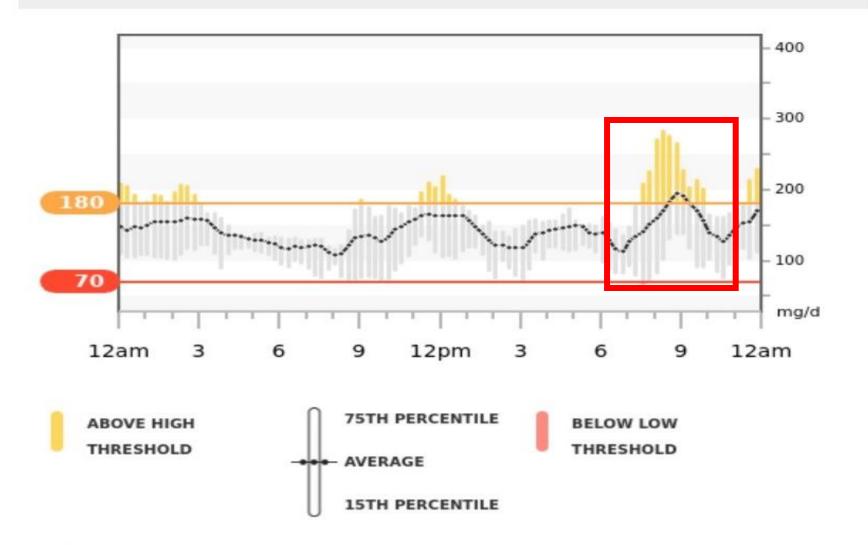

Increase since last week: +2% Target Range: 70-180 mg/dL

Average glucose Standard deviation 142 mg/dL 44 mg/dL

Patterns

No patterns were found for this date range.

Trends



Visit Dexcom CLARITY on the web for all your CGM glucose reports.

You signed up for this Dexcom CLARITY Weekly Summary with the Dexcom CLARITY app. Unsubscribe

Trends

Visit Dexcom CLARITY on the web for all your CGM glucose reports.

You signed up for this Dexcom CLARITY Weekly Summary with the Dexcom CLARITY app. <u>Unsubscribe</u>

What's coming?

Not FDA Approved

Dexcom G7 CGM

This latest model of the Dexcom CGM is set to bring a significant form-factor change: a combined sensor and transmitter design.

Features

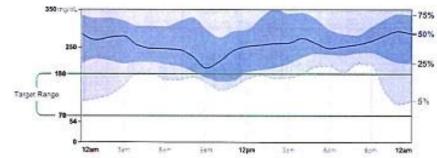
- ✓ Fully disposable
- ✓ Wear time: 14-15days, no fingersticks required
- ✓ Thinner
- ✓ Integration with software features.

Dexcom plans to submit the G7 for FDA approval in early 2021 and plans for a limited launch late in the year.

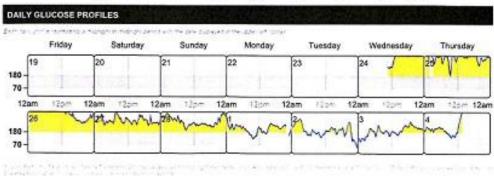
Reference:

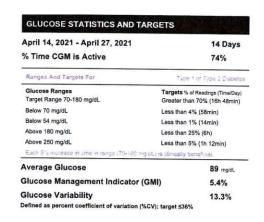
https/www.danatech.org/news/diabetesmine-new-diabetes-technology-what-to-expect-in-2021/https://www.healthline.com/diabetesmine/new-diabetes-technology-coming-in-2021

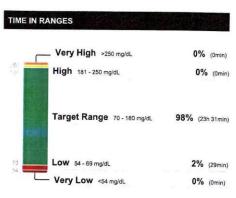
Table 2 Metrics used in CGM

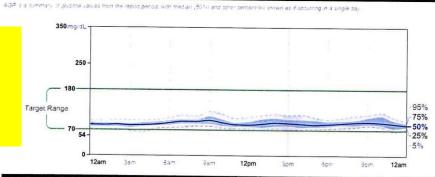

From: Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners

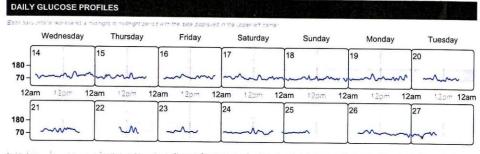
Metrics	Definition	Advantages/limitations
Standard deviation [45]	A measure of variance of glucose levels	Directly calculated by all devices
Coefficient of variation [45]	A measure of short-term within-day variability, independent of the mean value; percentiles represent deviations about the median, thus distinguishing stable from labile glycemic control	Easy to calculate from standard deviation and mean glucose level
Mean amplitude of glucose excursions [45]	A measure of short-term within-day variability	Obtained indirectly, through calculation
Precision absolute relative deviation [46]	Indicates the similarity of two sensor traces simultaneously recorded from a single CGM system worn by one subject	Easy to compute and interpret, but lacks detailed information
Continuous glucose-error grid analysis [46]	Provides a clinical assessment of accuracy by comparing CGM and SMBG results	Readings must be obtained at least every 15 min
Mean absolute relative difference [47]	Indicates the similarity of CGM and reference blood glucose results; expressed as the average of absolute errors between all CGM values and matched reference values	Provides a single value that represents the overall accuracy of the CGM system

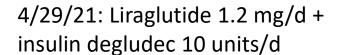

Lee (3) Before and After





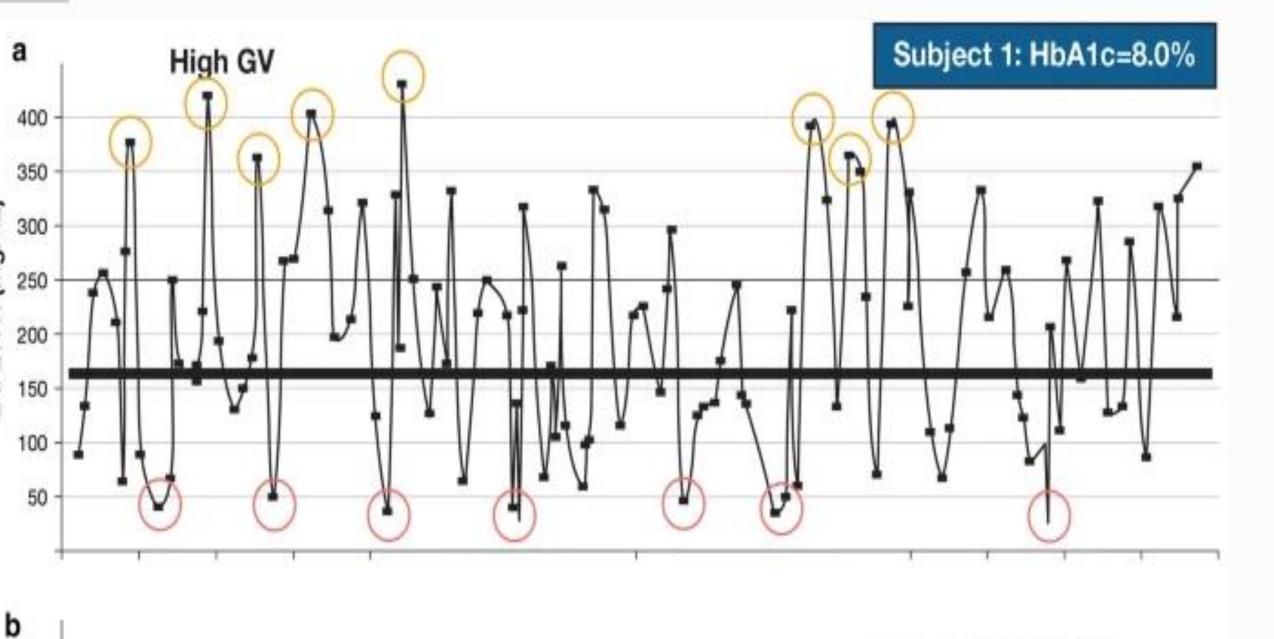

8 weeks until patient achieved target glycemic control!



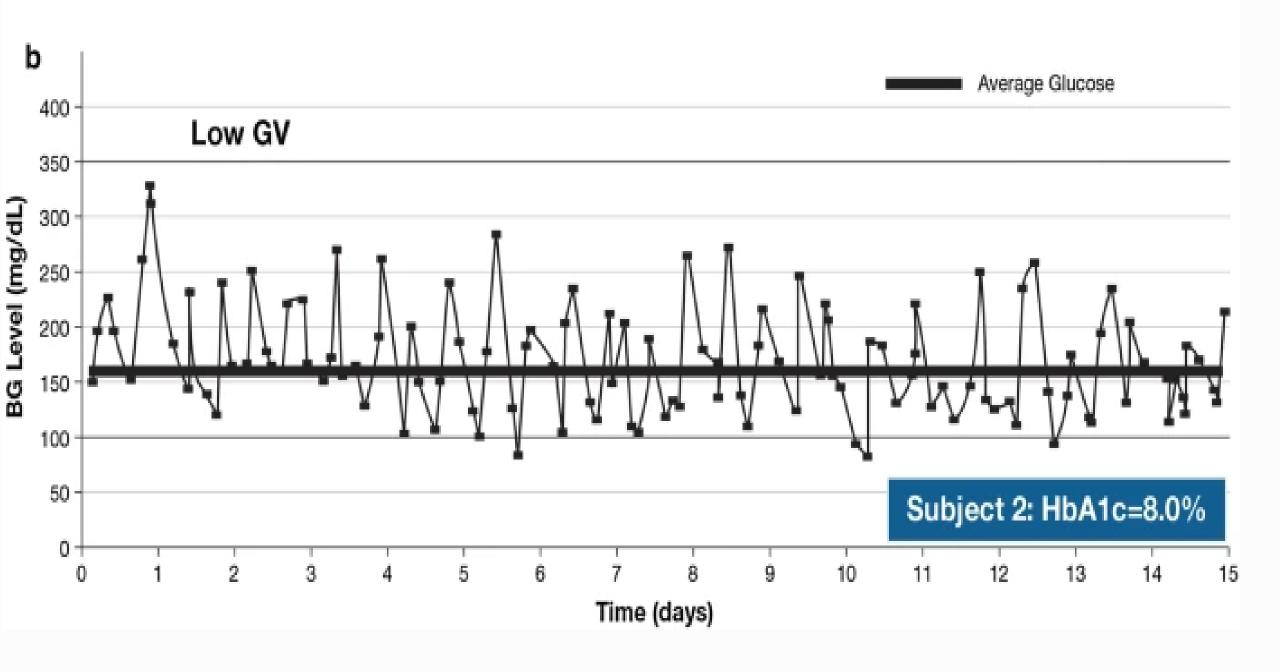


AMBULATORY GLUCOSE PROFILE (AGP)

Addressing Problematic Glycemic Patterns


Hypoglycemia (> 4 %)

- Review potential meal skips
- Stop or reduce SUs
- Consider use of meds which do not increase likelihood of hypoglycemia
- Reduce basal or premeal insulin dose
- Modify exercise timing related to insulin dosing
- Reduce or stop alcohol consumption
- Mismatch of prandial insulin dose and carbohydrate intake


Time in Range < 70 %

- Discuss med adherence
- Add basal insulin, GLP-1RA, SGLT2, or prandial insulin
- Discuss carb counting (identification) or meal size as related to prescribed insulin dosing

Average Glucose

Reproduced from Kovatchev and Cobelli [16] © 2016 by the American Diabetes Association

Tricks to Successful Initiation of CGM In Primary Care

Role of the Clinician

- Make it simple!
- Put the first sensor on in the office for the patient. Subsequent sensors can be placed by the patient with guidance from MA
- Explain how the CGM may benefit patients' diabetes control
 - More time in prescribed range
 - Reduced incidence of hypoglycemia
 - Improved glycemic variability
 - Access to data while sleeping
 - Improve A1C
 - Reduce risk of hospitalizations
 - Improved rates of work absenteeism

Role of the Patient

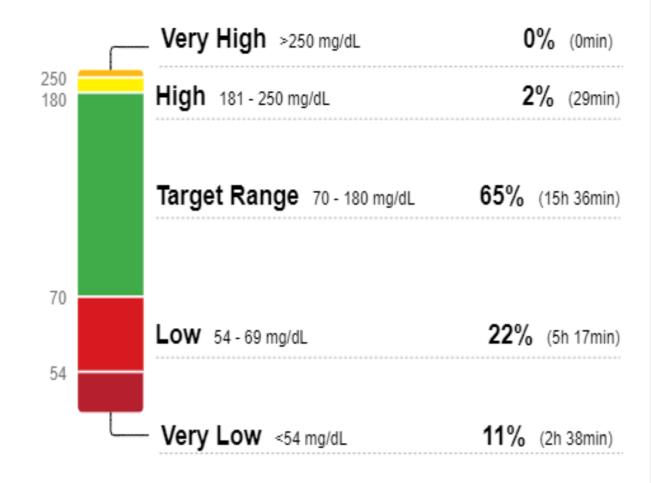
- Confidence in applying the sensor appropriately
- Scan frequently
- Minimize gaps in sensor wear
- Contact Customer Service if sensors fail or fall off
- Bring data to each visit
- Understand glycemic patterns related to food, sleep, exercise, travel, etc.

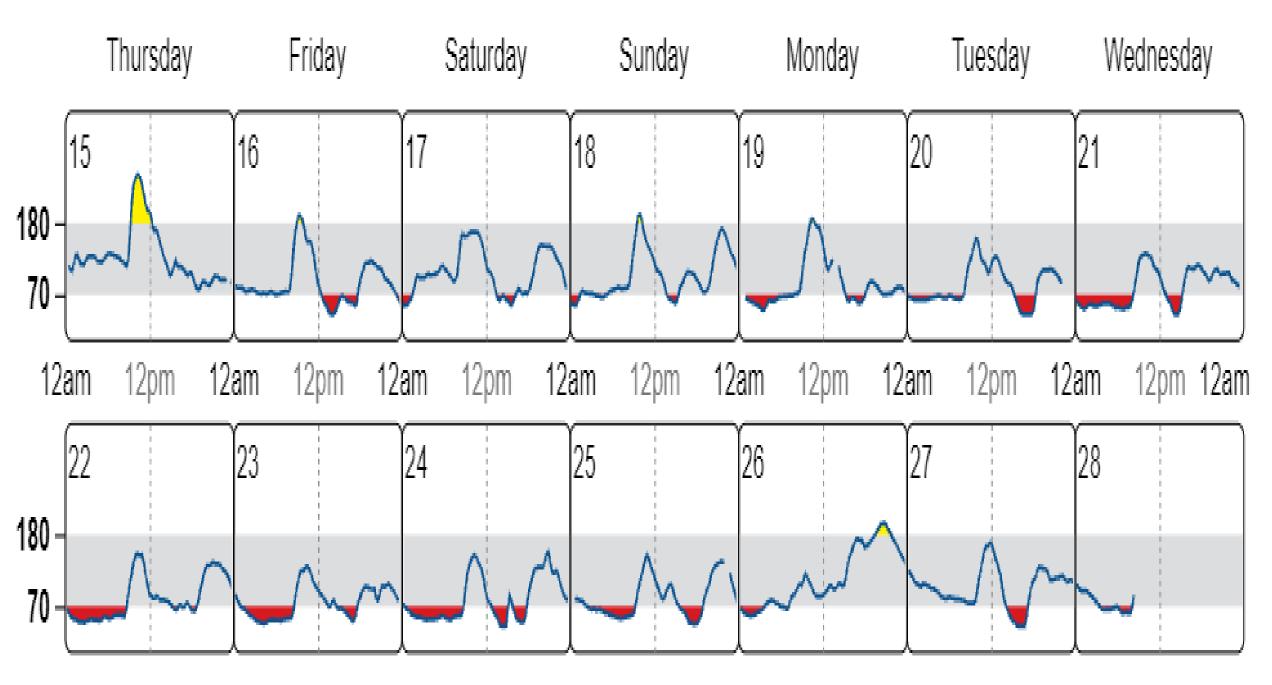
Pt CB

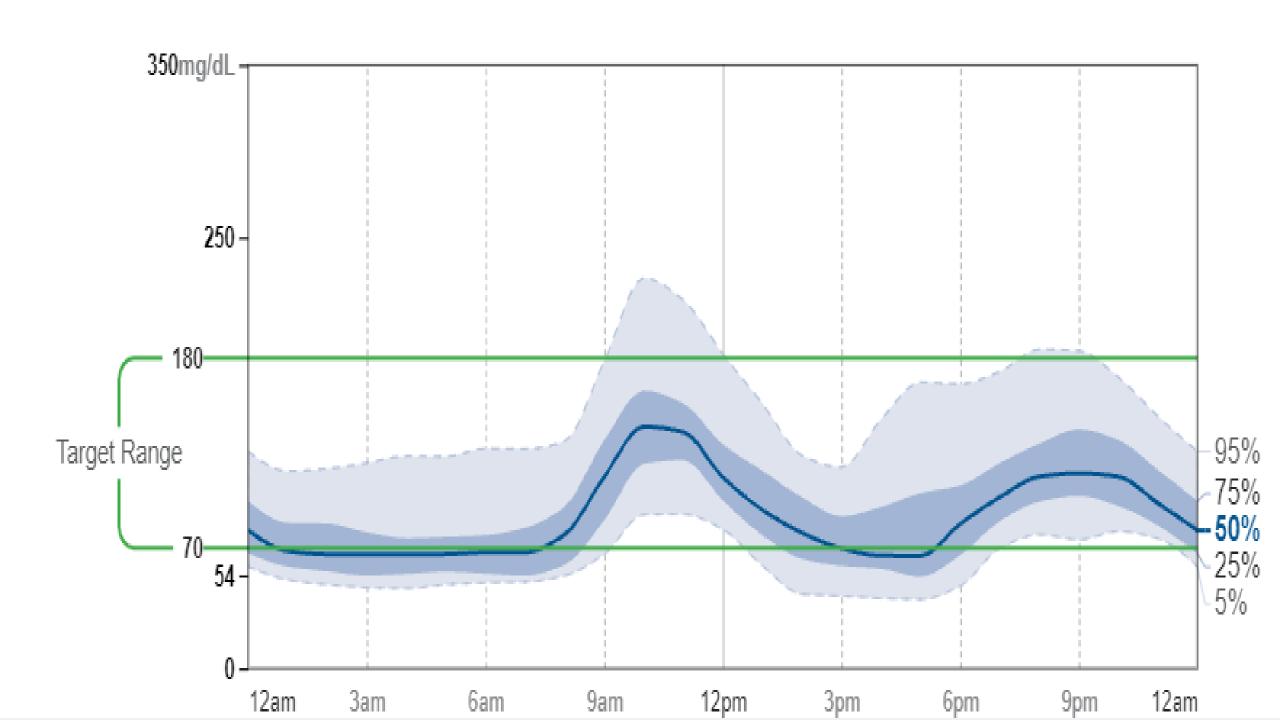
AGP Report

April 15, 2021 - April 28, 2021 (14 Days)

LibreView


April 15, 2021 - April 28, 2021 14 Days % Time CGM is Active 96%


Ranges And Targets For	Type 1 or Type 2 Diabetes	
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)	
Below 70 mg/dL	Less than 4% (58min)	
Below 54 mg/dL	Less than 1% (14min)	
Above 180 mg/dL	Less than 25% (6h)	
Above 250 mg/dL	Less than 5% (1h 12min)	
Each 5% increase in time in range (70-180 mg/dL) is clinically beneficial.		


Average Glucose 93 mg/dL Glucose Management Indicator (GMI) 5.5% Glucose Variability 39.5%

Defined as percent coefficient of variation (%CV); target ≤36%

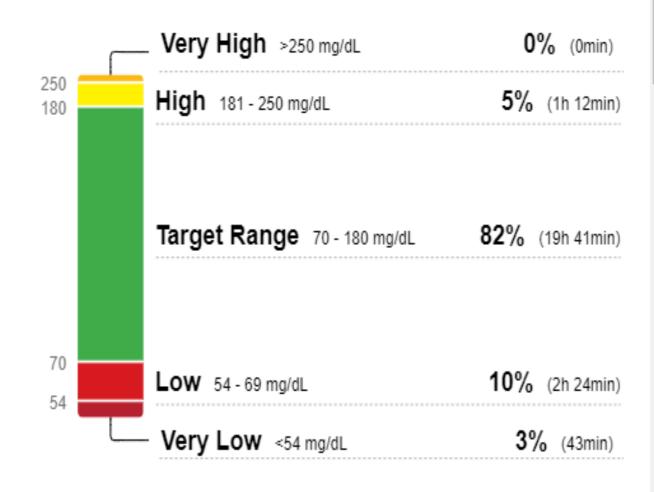
TIME IN RANGES

AGP Report

June 1, 2021 - June 14, 2021 (14 Days)

LibreView

GLUCOSE STATISTICS AND TARGETS


June 1, 2021 - June 14, 2021 14 Days % Time CGM is Active 93%

Ranges And Targets For	Type 1 or Type 2 Diabetes
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)
Below 70 mg/dL	Less than 4% (58min)
Below 54 mg/dL	Less than 1% (14min)
Above 180 mg/dL	Less than 25% (6h)
Above 250 mg/dL	Less than 5% (1h 12min)
Each 5% increase in time in range (70-180) mg/dL) is clinically beneficial.

Average Glucose	110 mg/dL
Glucose Management Indicator (GMI)	5.9%
Glucose Variability	33.4%

Defined as percent coefficient of variation (%CV); target ≤36%

TIME IN RANGES

What's coming?

Not FDA Approved

Abbott FreeStyle Libre 3

Features:

- ✓ no longer require any sensor scanning to provide realtime glucose readings.
- ✓ real-time glucose reading every minute, displaying that result on the compatible mobile app on iPhone or Android.
- ✓ continuous stream of data allows optional alerts for high and low blood sugars, along with glucose results.

Libre 3 likely to be submitted to the FDA during 2021.

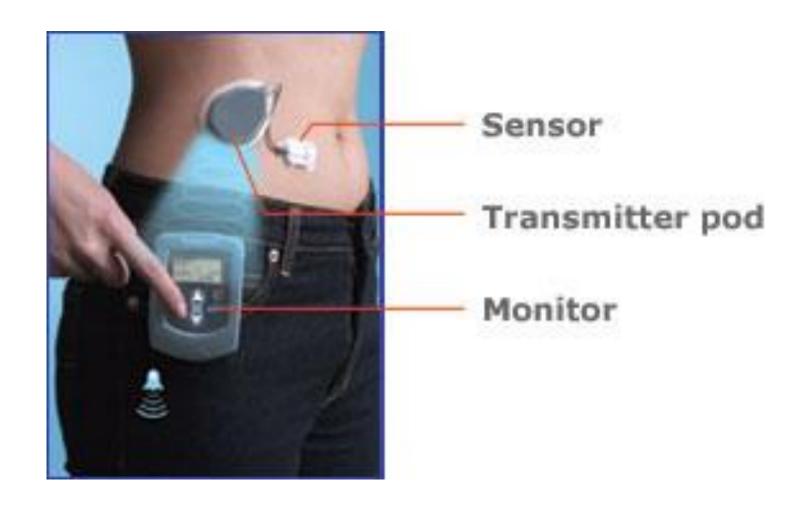
Reference:

https://www.danatech.org/news/diabetesmine-new-diabetes-technology-what-to-expect-in-2021/https://www.healthline.com/diabetesmine/new-diabetes-technology-coming-in-2021

Smart Pens

- Smart pens automatically track insulin doses and calculate active insulin
- Improve TIR without increasing hypoglycemia risk
- Real world study of 1736 patients before and after using Smart Pen increased TIR by 2.3 % in patients with a GMI > 8 % and 5 % for patients with a GMI > 9.5 %
- Improved glycemic control with less injections given (less stacking)

Patch Pumps


Omnipod Wireless Pump and PDM

V-Go Insulin Pump

Guardian RT System

What's coming?

Not FDA Approved

Future: Project Duo:

- Combined sensor & infusion set
- Single insertion
- 1 week wear

Connecting the Insulin Pump and CGM

Tandem Complete IQ with Dexcom 6 CGM

Medtronic 670 G plus Guardian CGM

Automated Insulin Delivery Devices (AID)

- Strongly recommended for all persons with T1DM
- Devices have been shown to increase TIR without causing an increased risk of hypoglycemia
- Preferred method of insulin
 delivery for people with diabetes and
 suboptimal glycemia, glycemic
 variability, impaired hypoglycemia
 awareness or who allow for
 permissive hyperglycemia due to
 their fear of hypoglycemia

In What Settings or Special Situations Is The Use of Diabetes Technology Useful?

- <u>Continuation</u> of CGM and or CSII should be considered in hospitalized patients without cognitive impairment
- rtCGM is recommended for people ≥ age 65 with insulin requiring diabetes to achieve improved glycemic control, reduce episodes of severe hypoglycemia and improve QOL.
 - Individualize glycemic targets in this population due to increased risk of comorbidities and long-term diabetes related complications
- Use CGM to track glucose before during and after exercise, help direct insulin and carbohydrate consumption and mitigate glycemic variability

CPT code	Descriptor	Medicare Allowable for Arizona
95249	Patient-owned (non-professional) CGM sensor placement, hook-up, calibration, patient training, removal of sensor, and printout of recording - Requires minimum of 72 hours of data collection - Can only be billed once for the duration the patient owns the device	\$55.62
95250	Professional CGM sensor placement, hook-up, calibration, patient training, removal of sensor, and printout of recording - Requires minimum of 72 hours of data collection - Can be billed once per month	\$149.53
95251	 CGM download and interpretation Patient does not have to be physically in the office Can be billed once a month Requires minimum of 72 hours of data for review 	\$34.91
99091	 Download and interpretation of insulin pump data Can be billed once a month CPT codes 95249, 95250, and 95251 cannot be billed in addition to this code 	\$55.77

From: Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial

JAMA. 2017;317(4):371-378. doi:10.1001/jama.2016.19975

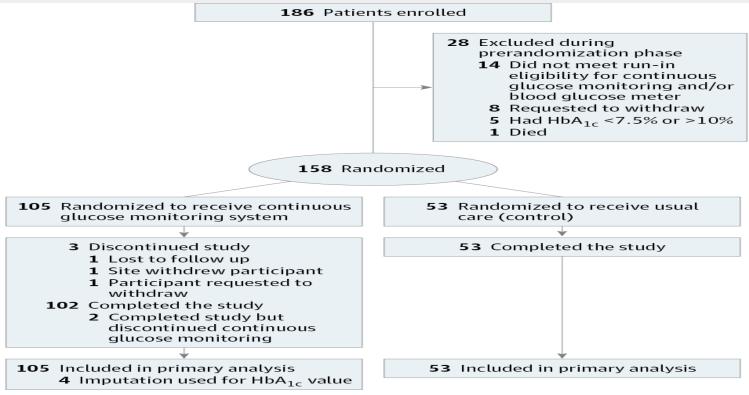


Figure Legend:

Flowchart of Continuous Glucose Monitoring Study CompletionAll enrolled participants started the run-in phase; 28 did not proceed to randomization for the reasons indicated in the figure. The number eligible for screening who did not sign the informed consent form was not recorded.

From: Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial

JAMA. 2017;317(4):371-378. doi:10.1001/jama.2016.19975

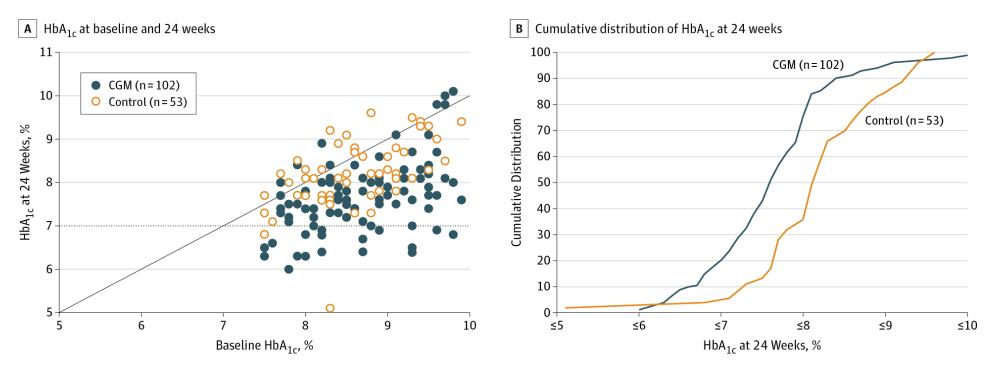


Figure Legend:

Hemoglobin A_{1c} Values at Baseline and 24 Weeks, by GroupA, Scatterplot of 24-week hemoglobin A_{1c} (HbA_{1c}) levels by baseline HbA_{1c} level. The horizontal line at 7.0% represents the American Diabetes Association HbA_{1c} goal for adults with type 1 diabetes. Points below the diagonal line represent cases in which the 24-week HbA_{1c} level was lower than the baseline HbA_{1c} level, points above the diagonal line represent cases in which the 24-week HbA_{1c} level was higher than the baseline HbA_{1c} level, and points on the diagonal line represent cases in which the 24-week HbA_{1c} level was higher than the baseline HbA_{1c} level, and points on the diagonal line represent cases in which the 24-week and baseline HbA_{1c} values were the same. B, Cumulative distribution of 24-week HbA_{1c} values. The percentage of cases in each treatment group with an HbA_{1c} value at that level or lower can be determined from the figure. To convert HbA_{1c} to the SI units of mmol/mol, multiply the HbA_{1c} percentage

From: Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial

JAMA. 2017;317(4):371-378. doi:10.1001/jama.2016.19975

Table 3. Continuous Glucose Monitoring Metrics

	CGM Group (n = 105)	Control Group (n = 53)	CGM Group (n = 103)	Control Group (n = 53)	Mean Adjusted Difference (99% CI) ^b	<i>P</i> Value ^b
Hours of data, mean (SD)	322 (50)	325 (51)	301 (41)	301 (54)		
Prespecified secondary outcomes						
Glucose variability: coefficient of variation, mean (SD), %	42 (7)	42 (7)	38 (6)	42 (7)	-4 (-6 to -2)	<.001
Minutes per day in range 70-180 mg/dL, mean (SD)	660 (179)	650 (170)	736 (206)	650 (194)	77 (6 to 147)	.005
Hypoglycemia, median (IQR)						
Minutes per day <70 mg/dL	65 (33 to 103)	72 (35 to 136)	43 (27 to 69)	80 (36 to 111)		.002
Minutes per day <60 mg/dL	32 (15 to 61)	39 (15 to 78)	20 (9 to 30)	40 (16 to 68)		.002
Minutes per day <50 mg/dL	13 (5 to 29)	18 (4 to 39)	6 (2 to 12)	20 (4 to 42)		.001
Hyperglycemia, median (IQR)						
Minutes per day >180 mg/dL	687 (554 to 810)	725 (537 to 798)	638 (503 to 807)	740 (625 to 854)		.03
Minutes per day >250 mg/dL	301 (190 to 401)	269 (184 to 383)	223 (128 to 351)	347 (241 to 429)		<.001
Minutes per day >300 mg/dL	129 (66 to 201)	109 (71 to 204)	78 (36 to 142)	167 (89 to 226)		<.001
Prespecified exploratory outcome						
Mean glucose, mean (SD), mg/dL	187 (27)	186 (30)	180 (27)	189 (25)	-9 (-19 to 0)	.01
Post hoc outcomes, median (IQR) ^c						
Area above curve 70 mg/dL	0.5 (0.3 to 1.1)	0.7 (0.2 to 1.4)	0.3 (0.2 to 0.5)	0.7 (0.2 to 1.3)		<.001
Area under curve 180 mg/dL	34 (25 to 46)	33 (26 to 45)	27 (17 to 40)	40 (31 to 51)		<.001

Abbreviations: CGM, continuous glucose monitoring; IQR, interquartile range.

metrics (including area above the curve 70 mg/dL and area below the curve 180 mg/dL), these models were based on ranks using van der Waerden scores. P < .01 was considered significant to account for multiple comparisons (with 99% CI accordingly provided for the metrics that are approximately normally distributed).

^c Area above (the glucose) curve 70 mg/dL reflects both percentage and severity of glucose values in the hypoglycemic range. Area under (the glucose) curve 180 mg/dL is the analogous measure for hyperglycemia.

Table Title:

Continuous Glucose Monitoring MetricsAbbreviations: CGM, continuous glucose monitoring; IQR, interquartile range.

SI Conversion: to convert glucose to mmol/L, multiply the values × 0.0555.

^a Excludes 2 participants in the CGM group with less than 72 hours of data (a prespecified condition).

b Treatment group comparisons made with analysis of covariance models, adjusted for the corresponding baseline value, baseline hemoglobin And level, and clinical site as a random effect, using pooled data from 12 and 24 weeks. Because of skewed distributions for the hypoglycemia and hyperglycemia metrics (including area above the curve 70 mg/dL and area below the curve 180 mg/dL),

SI Conversion: to convert glucose to mmol/L, multiply the values × 0.0555.

^a Excludes 2 participants in the CGM group with less than 72 hours of data (a prespecified condition).

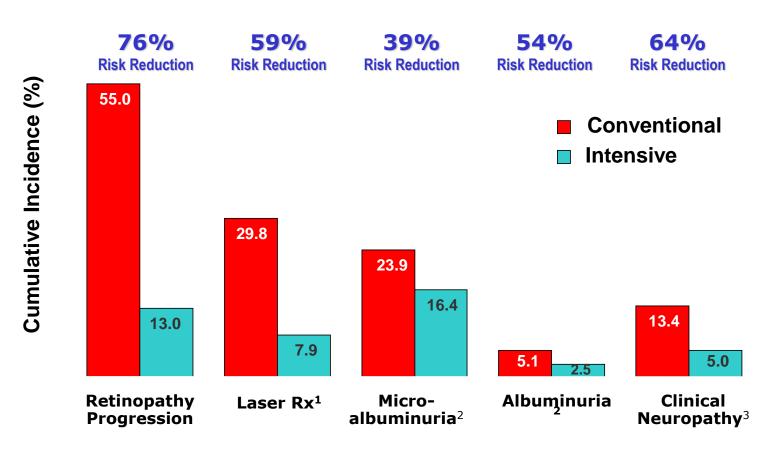
^b Treatment group comparisons made with analysis of covariance models, adjusted for the corresponding baseline value, baseline hemoglobin A_{1c} level, and clinical site as a random effect, using pooled data from 12 and 24 weeks. Because of skewed distributions for the hypoglycemia and hyperglycemia

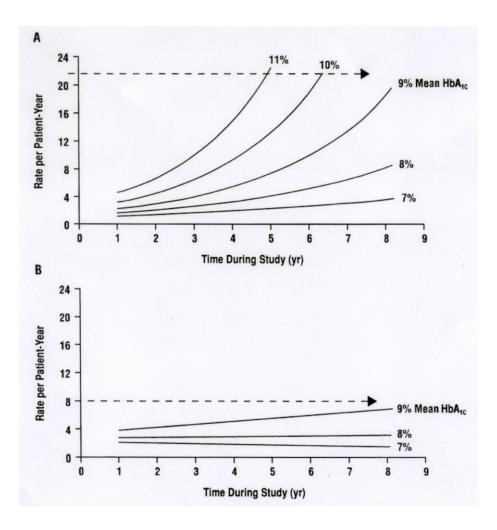
PUMPS AVAILABLE IN THE US

MEDTRONIC SERIES 670,770, SOON 880
TSLIM SERIES X2 WITH CONTROL IQ
OMNIPOD

TODAY'S PUMPTHERAPY

Medtronic




Why We Do It

Better Control Reduces Complications

- 1. DCCT Research Group, Ophthalmology. 1995;102:647-661
- 2. DCCT Research Group, *Kidney Int.* 1995;47:1703-1720
- 3. DCCT Research Group Ann Intern Med 1995;122:561-568.

Pumps Or MDI Are Better Despite A1c

The DCCT conventional group (top) was 22 times more likely to get retinopathy at an A1c of 9%.

The intensive group <u>at the same</u>

<u>A1c</u> was only 8 times as likely to get retinopathy.

The reduced risk may result from less glucose variability seen with pumps and MDI.

Impact Of Glucose Variability

from Irl Hirsch, MD

Cell death is about 2.5 times as likely in human umbilical vein endothelial cell cultures after 14 days when glucose varies between 90 and 360 mg/dl compared to cells kept at 360 mg/dl. ¹

Activation of PKC-beta after 14 days is about 80% higher when glucose varies between 90 and 360 mg/dl compared to cells kept at 360 mg/dl. ²

- 1. Amer J Physiol Endocrinol Metab 281: E924-E930, 2001
- 2. Diabetes 52: 2795, 2003

CVD And Mortality In Relation To BG

Heart attacks and death are more closely linked to postmeal blood sugars.

Glucose variability may play a role.

1139 diet-controlled subjects, 30-55 yo at diagnosis. During 11 yr followup, 112 (15.2%) suffered from myocardial infarction, 197 (19.82%) of 994 had died. Odds ratio for all-cause mortality for males at the age of 36-45 years was 5.1 and for females 7.0

Pumps Have Come A Long Way

Pump & CGM SYSTEMS

Medtronic 630 with Guardian Sensor Ages 14 & up

Medtronic 770 with Guardian Sensor

Tandem X2 with G6
Ages 6 & up

Dexcom G6TM
Ages 2 & up

Medtronic Minimed® 770G

SMARTGUARD™ TECHNOLOGY

- Similar to previous 670G Hybrid Artificial Pancreas
- Adjust insulin delivery based on sensor glucose (SG) values, with suspend delivery of insulin when SG falls below or is predicted to fall below predefined threshold. Manual Mode & Automode.
- Works with the GuardianLink3 transmitter and Guardian Sensor (3)- 7 day sensor, with Bluetooth capability.
- Minimed® Mobile App: see device data on phone and receive alerts when glucose is going high or low; remote uploading to Carelink.
- Carelink ™ Connect App: securely share data with up to 5 people.
- Enabled for future software upgrades: Medtronic offers an upgrade at no charge through December 2021.
- Accuchek Guide-Link Meter
- Approved for ages 2 and up
- * Do not use the SmartGuard™ Auto Mode for people who require less than eight units or more than 250 units of total daily insulin per day.

Reference: https://www.medtronicdiabetes.com/products/minimed-770g-insulin-pump-system

MEDTRONIC 770G COMPONENTS

CONTINUOUS GLUCOSE MONITOR (CGM)

Measures glucose levels every five minutes and sends readings automatically to the pump.

SMARTPHONE APP

Displays your current glucose level, plus see trends over time on your phone.

INSULIN PUMP

Delivers insulin and communicates with other system components to calculate insulin adjustments.

INFUSION SET

Allows for continuous and discreet delivery of insulin through a thin, flexible tube.

ACCU-CHEK® GUIDE LINK BLOOD GLUCOSE METER

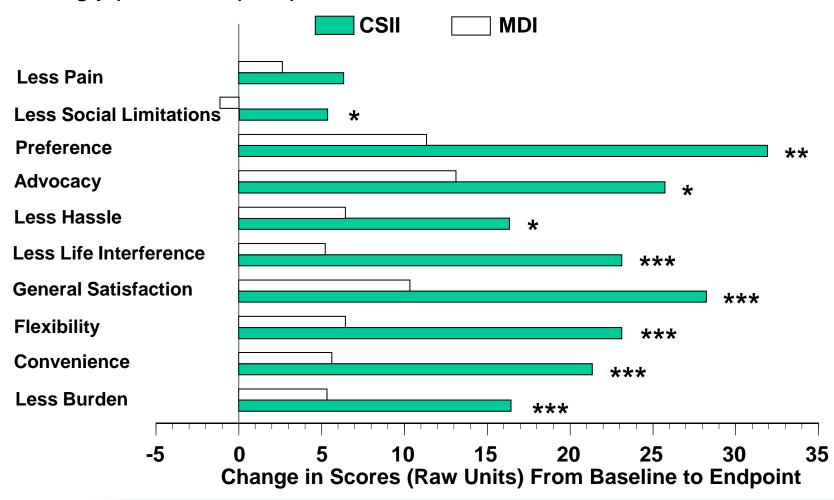
Accurate test results are sent wirelessly to the pump for quick sensor calibrations.

Smartphone apps

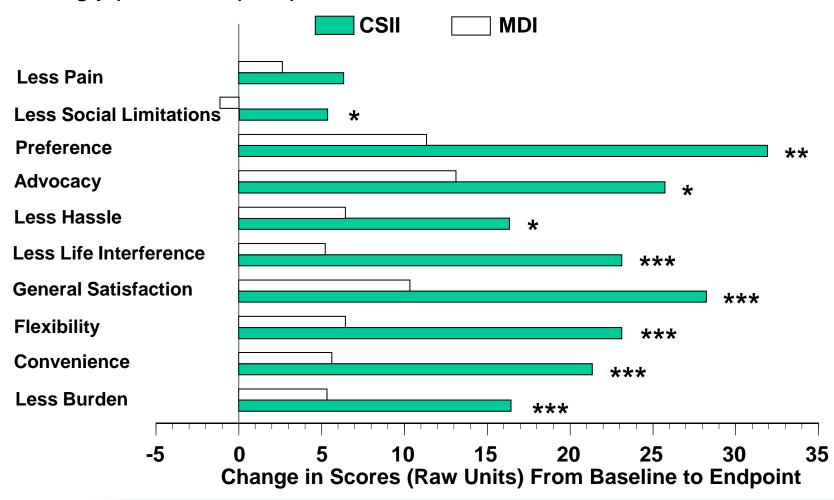
AVAILABLE FOR IOS AND ANDROID™

MINIMEDTM MOBILE APP For the pump patient

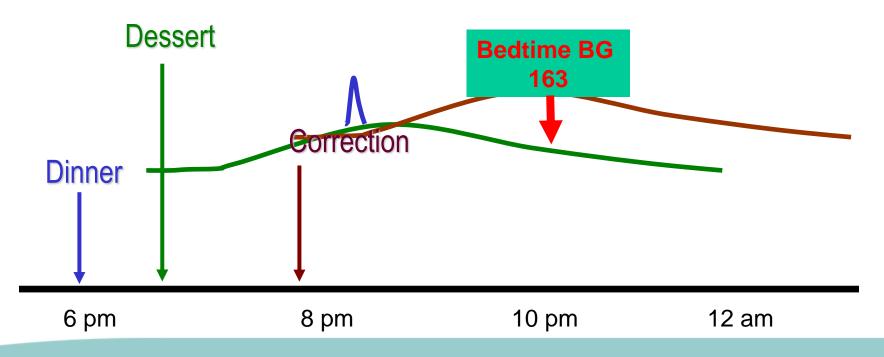
- 1. Alert and alarm notifications
- 2. Insulin delivery information
- 3. Sensor glucose data
- 4. 24-hour Time in Range statistics
- 5. Sync to CareLink[™] feature


CARELINKTM CONNECT APP For care partners

- 1. Alert and alarm notifications
- 2. Insulin delivery information
- 3. Sensor glucose data
- 4. 24-hour Time in Range statistics
- 5. History log

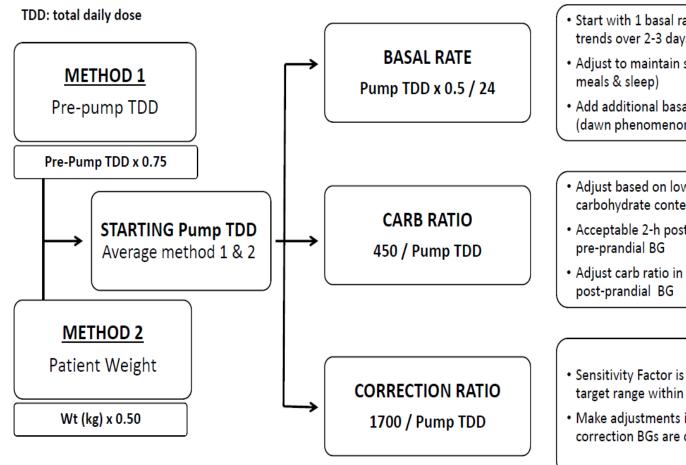

Pumps vs MDI in Type 2 DM

People with Type 2 diabetes who have tried both a pump and MDI strongly prefer the pump.


Pumps vs MDI in Type 2 DM

People with Type 2 diabetes who have tried both a pump and MDI strongly prefer the pump.

Overlapping Boluses


When several boluses are given in the evening, how much total bolus insulin remains at bedtime?

Basal Rates

- Basal rates that are set correctly should keep your BG relatively stable in the absence of food, exercise or extra insulin
- Basal rates should be evaluated when there is variability in BG readings, change of season, significant weight changes or change in physical status

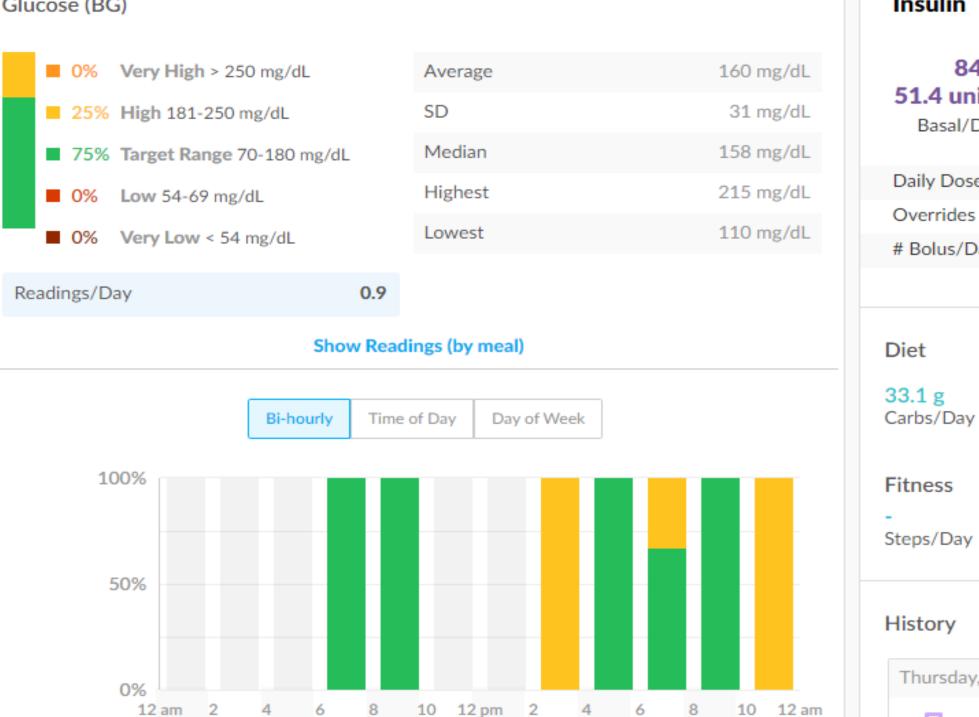
Initial Calculations for CSII

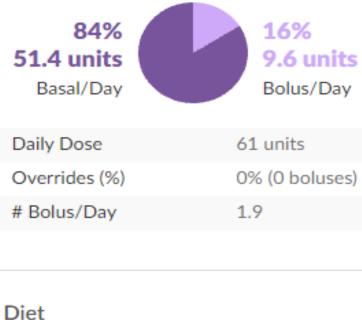
Hypoglycemia patients – start at lower value of method 1 & 2

Hyperglycemic, elevated A1C or pregnant – start at higher value of method 1 & 2

Consensus Statement by AACE/ACE insulin pump management task force. Endocr Pract. 2014 May; 20(5):463-89.

- Start with 1 basal rate, adjust according to glucose trends over 2-3 days
- Adjust to maintain stability in fasting state (between meals & sleep)
- Add additional basals according to diurnal variation (dawn phenomenon)
- Adjust based on low-fat meals with known carbohydrate content
- Acceptable 2-h post-prandial rise is ~60mg/dL above pre-prandial BG
- Adjust carb ratio in 10%-20% increments based on post-prandial BG
- Sensitivity Factor is correct if BG is within 30 mg/dL of target range within 2 hours after correction
- Make adjustments in 10%-20% increments if 2-hr postcorrection BGs are consistently above or below target



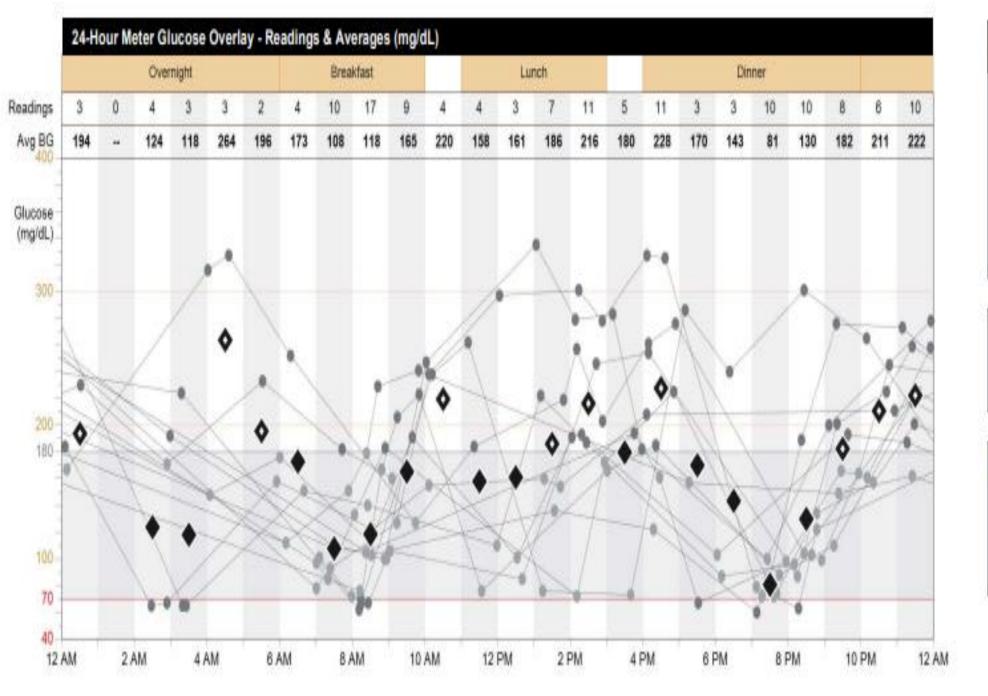

How Does Control-IQ Technology Work?

Control-IQ™ technology is designed to help increase time in range (70—180 mg/dL)* using Dexcom G6 continuous glucose monitoring (CGM) values to predict glucose levels 30 minutes ahead and adjust insulin delivery accordingly, including delivery of automatic correction boluses (up to one per hour).

		Control-IQ	Sleep Activity	◆ 季 Exercise Activity
Delivers	Delivers an automatic correction bolus if sensor glucose is predicted to be above mg/dL	180		180
	Increases basal insulin delivery if sensor glucose is predicted to be above mg/dL	160	120	160
♦ B Maintains	Maintains active Personal Profile settings when sensor glucose is between mg/dL	112.5 - 160	112.5 - 120	140 - 160
♠ B Decreases	Decreases basal insulin delivery if sensor glucose is predicted to be below mg/dL	112.5	112.5	140
Stops	Stops basal insulin delivery if sensor glucose is predicted to be below mg/dL	70	70	80

Pt CB

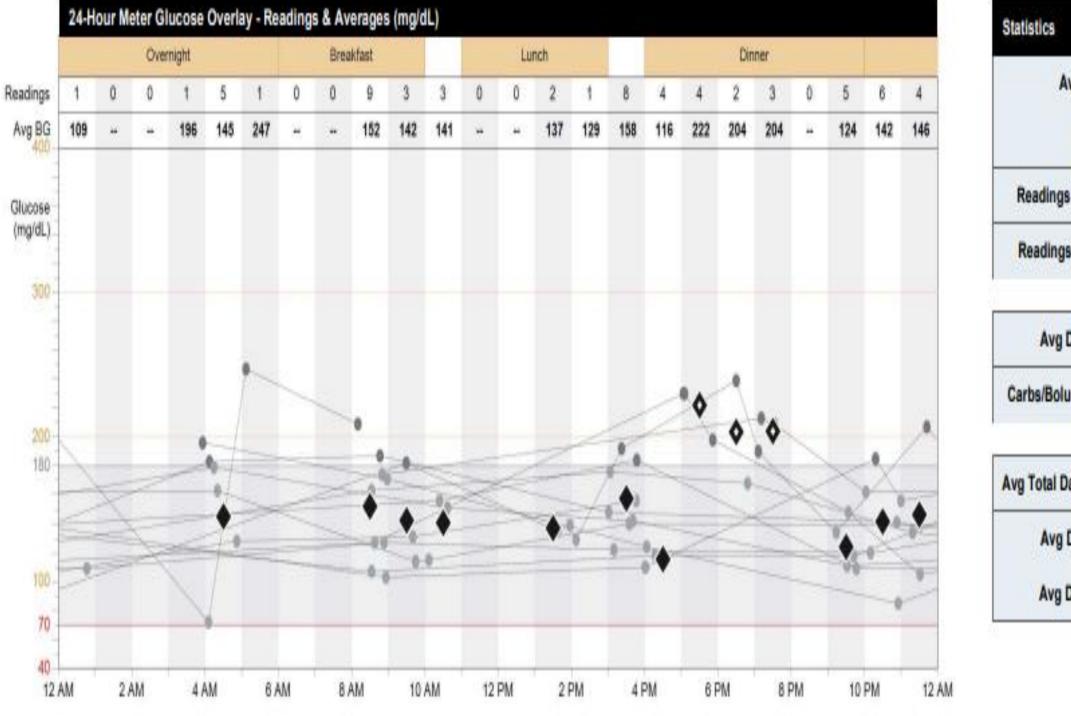
Steps/Day



1.6

Entries/Day

Thursday, September 30, 2021


Police

Statistics	06-23 -	07-06
Avg BG (mg/dL)	166 :	73
BG Readings	150	10.7/day
Readings Above Target	64	43%
Readings Below Target	10	7%
Avg Daily Carbs (g)	127 :	± 49
Carbs/Bolus Insulin (g/U)	4.2	

Avg Daily Carbs (g)	127 ± 49	
Carbs/Bolus Insulin (g/U)	4.2	

Avg Total Daily Insulin (U)	100.8 ± 16.2	
Avg Daily Basal (U)	69.0	68%
Avg Daily Bolus (U)	31.8	32%

Statistics	03-20 - 04-02	
Avg BG (mg/dL)	155 ±	41
BG Readings	62	4.4/day
Readings Above Target	18	29%
Readings Below Target	-	0%
Avg Daily Carbs (g)	103 ±	: 38
Carbs/Bolus Insulin (g/U)	9.2	
Avg Total Daily Insulin (U)	30.6 ±	2.8
		-

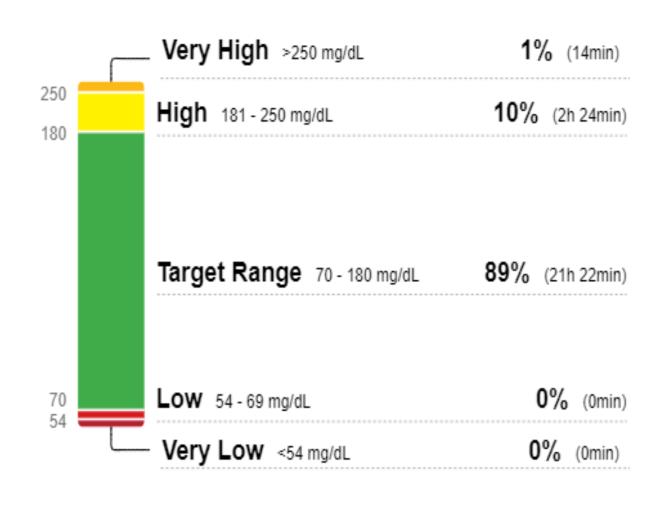
Avg Total Daily Insulin (U)	30.6 ± 2.8	
Avg Daily Basal (U)	19.1	62%
Avg Daily Bolus (U)	11.5	38%

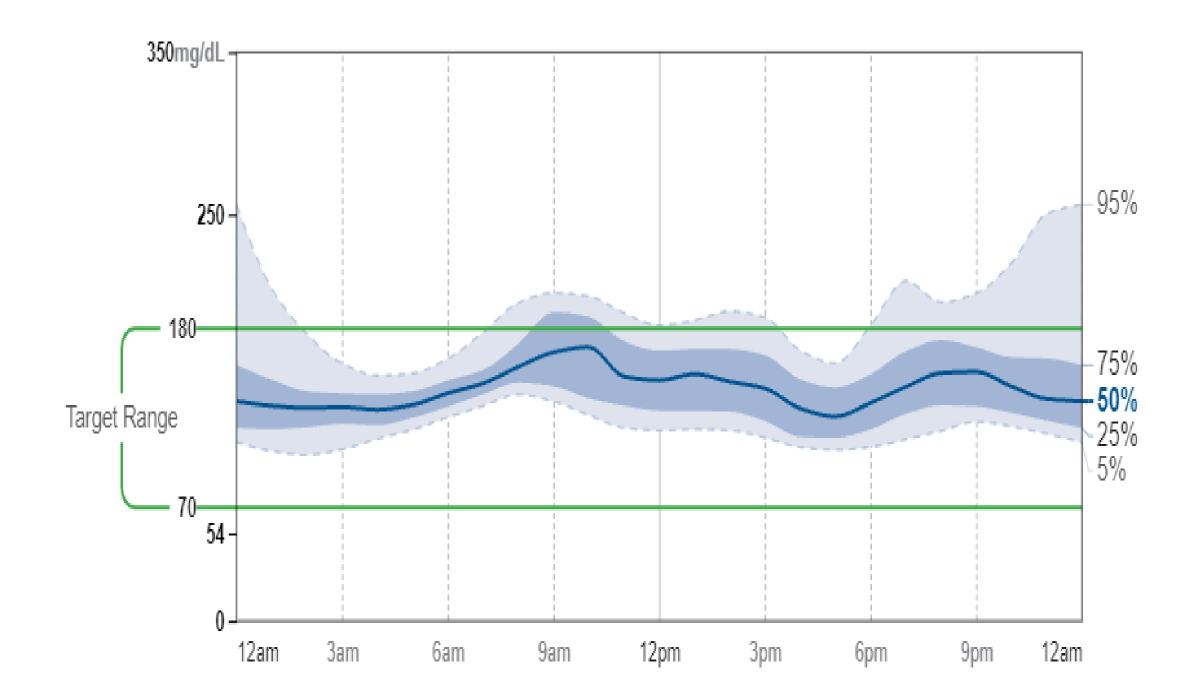
AGP Report

March 5, 2020 - March 17, 2020 (13 Days)

GLUCOSE STATISTICS AND TARGETS

March 5, 2020 - March 17, 2020 13 Days
% Time CGM is Active 100%


Ranges And Targets For	Type 1 or Type 2 Diabetes
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)
Below 70 mg/dL	Less than 4% (58min)
Below 54 mg/dL	Less than 1% (14min)
Above 180 mg/dL	Less than 25% (6h)
Above 250 mg/dL	Less than 5% (1h 12min)
Each 5% increase in time in range (70-180 mg/	dL) is clinically beneficial.


Average Glucose	146 mg/d
Glucose Management Indicator (GMI)	6.8%
Glucose Variability	18.6%

Defined as percent coefficient of variation (%CV); target ≤36%

TIME IN RANGES

Omnipod DASH

- The Dash PDM Bluetooth enabled PDM (Personal Data Manager) a locked-down, touchscreen, color Android phone
- Bluetooth & WiFi system allows for: data upload to Glooko and smartphone connectivity remote software updates
- Recent DASH software update allows automatic uploads to Glooko**
- The Omnipod Display app allows users to discreetly monitor their pump data on their own smartphone
 - **The Omnipod View app** allows up to 12 followers to monitor their loved ones' insulin pump information (this is completely optional).
- Processed through Pharmacy Benefit.

To have the automatic uploads you must have a Glooko account, be connected to WiFi and have a Podder Central Account.

Reference: https://www.myomnipod.com/about

Insulet's Omnipod DASH™ System Received FDA Alternate Controller Enabled (ACE) Classification

(September 2019)

Pumps that meet this FDA qualification have special controls for assuring accuracy, reliability, cybersecurity and clinical relevance of ACE pumps.

What's Coming 2021: OmniPod Horizon(Omnipod 5)

Not FDA Approved

- > Automatically adjust basal insulin delivery based on CGM
- ➤ Integrate Freestyle Libre 2, G6, and G7 CGMs, first AID system with 2 CGM Partners
- ➤ Omnipod 5 is also set to bring mobile app control and insulin dosing, eliminating the need to carry a separate Personal Diabetes Manager (PDM) around to control the Omnipod.

Reference:

https/www.danatech.org/news/diabetesmine-new-diabetes-technology-what-to-expect-in-2021/https://www.healthline.com/diabetesmine/new-diabetes-technology-coming-in-2021

What's Coming?

Medtronic Minimed 780G

- Advanced Hybrid Closed Loop
- Bluetooth connectivity
- Maximize automode
- Automatic correction bolus'
- Adjustable target blood glucose level down to 100 mg/dl.
- Remote software updating

Clinical trials completed; hope to have FDA approval by late 2020 Recently approved in Europe.

Source: ADA 2019 Highlights: https://diatribe.org/ada-2019-day-2-highlights#nutrition

- High definition color screen with touchscreen
- Rechargeable battery, battery life 4-6 days. *If using CGM: 4 days
- 300-unit reservoir, minimum fill 95 units
- Watertight
- New software changes can be uploaded with Tandem Device Updater
- An advanced Bluetooth radio capable of communicating with more than one device at a time and future technologies
- Basal IQ Approved for ages 6 years & up
- Control IQ approved for ages 6 years & up (June 2020) https://www.tandemdiabetes.com/products/t-slim-x2-insulin-pump

TslimX2 with Control IQ

- Discontinues basal delivery based on falling CGM values
- Gradually increases basal insulin based on increasing CGM values
- Administers automatic correction boluses once an hour to prevent ongoing hyperglycemia.

Optional Sleep and Exercise Activity Settings adjust treatment ranges to better match physiologic needs when active or sleeping.

Control IQ targets 110mg/dl. Therefore is not recommended in Pregnancy.

Control IQ is not recommended if an individual uses less than 10 units of insulin per day

Or weight is less than 55lbs or under age 6.

How Does Control-IQ Technology Work?

Control-IQ™ technology is designed to help increase time in range (70—180 mg/dL)* using Dexcom G6 continuous glucose monitoring (CGM) values to predict glucose levels 30 minutes ahead and adjust insulin delivery accordingly, including delivery of automatic correction boluses as needed.†

	<u> </u>	
180 —	♦ ■ Delivers	Delivers an automatic correction bolus if sensor glucose is predicted to be above 180 mg/dL
160	♠ B Increases	Increases basal insulin delivery if sensor glucose is predicted to be above 160 mg/dL
112.5 —	♦ B Maintains	Maintains active Personal Profile settings
70 —	Decreases	Decreases basal insulin delivery if sensor glucose is predicted to be below 112.5 mg/dL
mg/dL	♦ II Stops	Stops basal insulin delivery if sensor glucose is predicted to be below 70 mg/dL

Not FDA Approved

What's coming?

Tandem's mobile bolusing

The company had already filed its expanded mobile app functionality with the FDA at the end of 2020, according to investor updates.

With that added function, the newly designed <u>t:connect app</u> — launched in mid-2020 alongside Tandem's <u>Control-IQ</u> system — will allow for remote bolusing via mobile app for the existing t:slim X2 pump platform and beyond.

Reference:

https/www.danatech.org/news/diabetesmine-new-diabetes-technology-what-to-expect-in-2021/https://www.healthline.com/diabetesmine/new-diabetes-technology-coming-in-2021

What's Coming? Not FDA Approved

t:sport Insulin "Patch" Pump with Hybrid


- > expected to hold 200 units of insulin
- ➤ integrate the Control-IQ hybrid closed loop algorithm and receive data from Dexcom CGM
- ➤ The t:sport will have an adhesive part, but also the t:slim's trademark t:lock connector "pigtail" insulin tubing that attaches to the infusion set for insulin delivery.
- ➤ now expected to be filed with FDA in late 2021, pushing the likely launch to either the end of 2021 or early 2022.

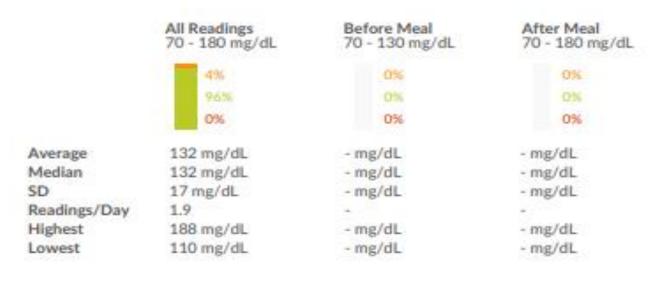
Reference:

https/www.danatech.org/news/diabetesmine-new-diabetes-technology-what-to-expect-in-2021/https://www.healthline.com/diabetesmine/new-diabetes-technology-coming-in-2021#Smartphone-control-of-devices-

Bolus entered correction, with carbs, Amount of insulin displayed shows insulin Given at meal.

Automatic correction bolus, pump is trying to compensate for highs.

Tandem Additional Developments




t:connect Mobile App

- Allowing users to view pump status and alerts on phone.
- Wirelessly upload pump data to Tandem t:connect web based diabetes data application.

Glucose (BG)

Insulin

Daily Dose Overrides (%) # Bolus/Day 55.7 units 0% (0 boluses) 2.9

Diet

Carbs/Day 32.9 g Entries/Day 2

Fitness

No fitness tracker connected

Comments

Dashboard | Thursday Feb 04, 2021 - Wednesday Feb 10, 2021

Highest Blood Glucose


257

Average Blood Glucose

181

Lowest Blood Glucose

134

Highest CGM Reading

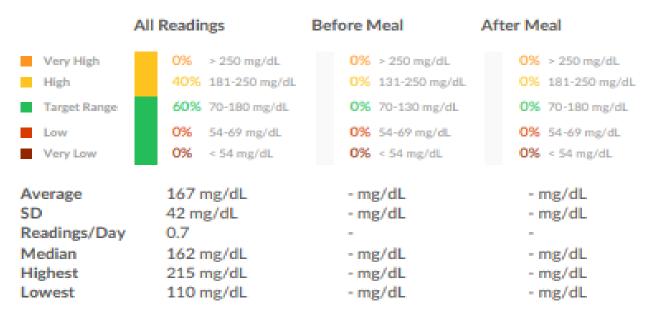
360

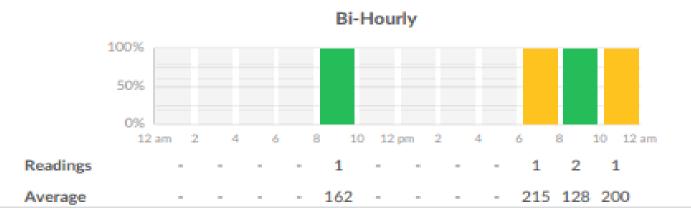
Average CGM Reading

147

Lowest CGM Reading

43


Control-IQ™ Technology				
Average Reading		148 mg/dL		
Time in Use	81%	5 d 16 hr.		
Control-IQ Set to Off	0%	0 min.		
CGM Inactive ¹	16%	1 d 2 hrs.		


DOB: Jun 18, 1949 Diabetes: Type 2

Sep 26, 2021 - Oct 2, 2021 (7 days)

Today: October 4, 2021

Glucose (BG)

Insulin

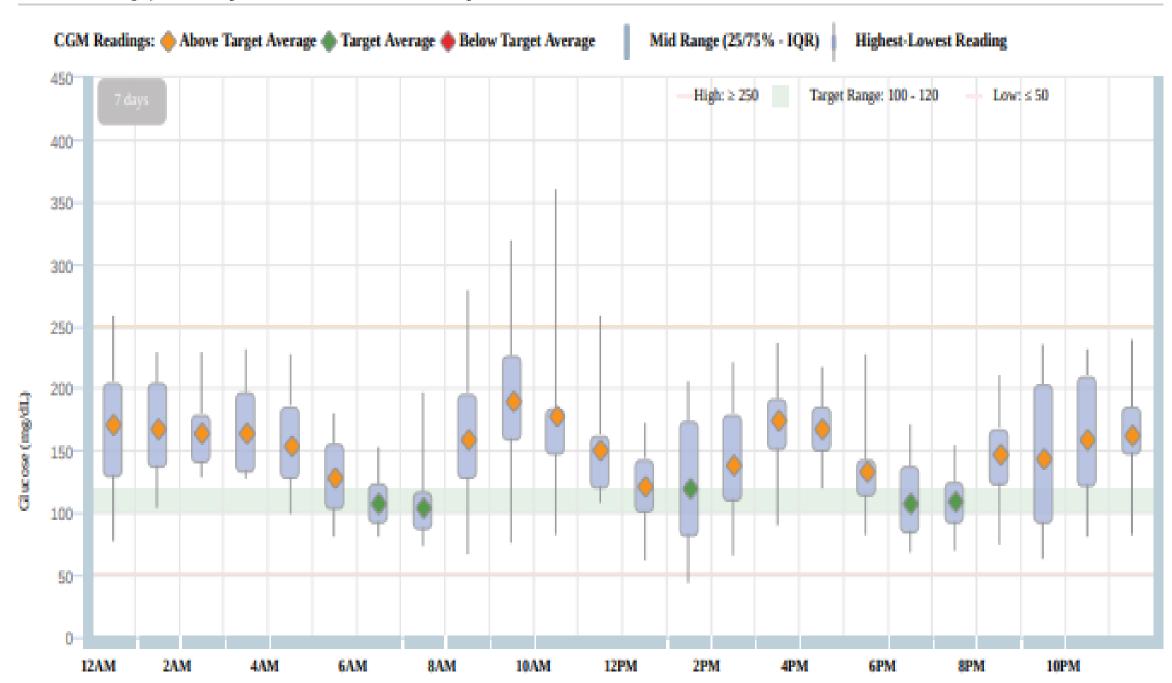
Daily Dose	65.6 units
Overrides (%)	0% (0 boluses)
# Bolus/Day	1.7

Diet

Carbs/Day	37.8 g
Entries/Day	1.8

Fitness

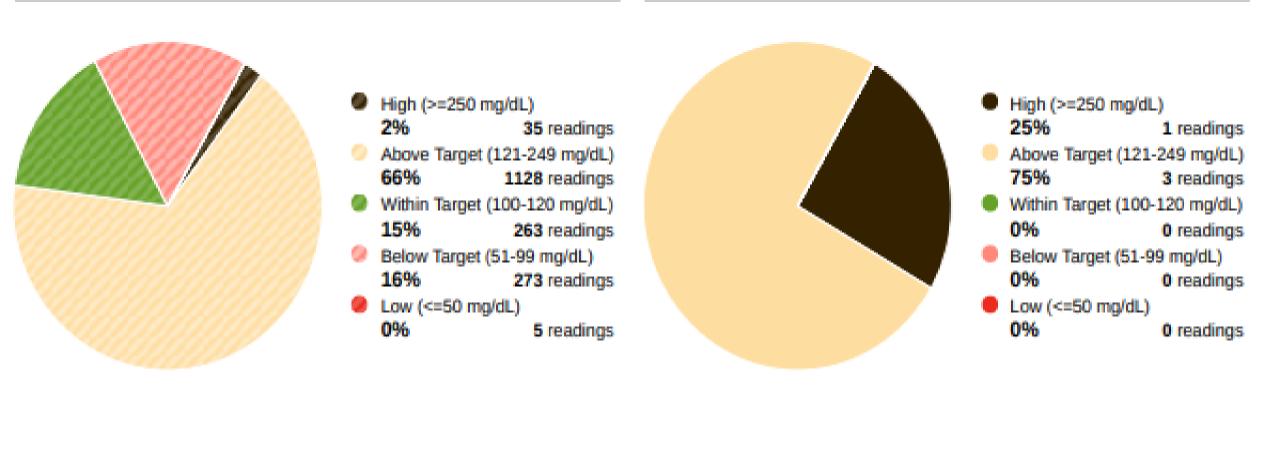
No fitness tracker connected


Comments

Avg. Sleep & Exerci		
arg. oreep a cause	se	
Daily Sleep		8 hrs. 35 min.
Weekly Exercise Eve	nts	0 times

Average Daily Insulin Summary				
Basal		58 % 26.92 u/day		
Food Bolus		25% 11.75 u/day		
Correction Bolus		4% 1.78 u/day		
Control-IQ Auto Bolus		13 % 6.11 u/day		

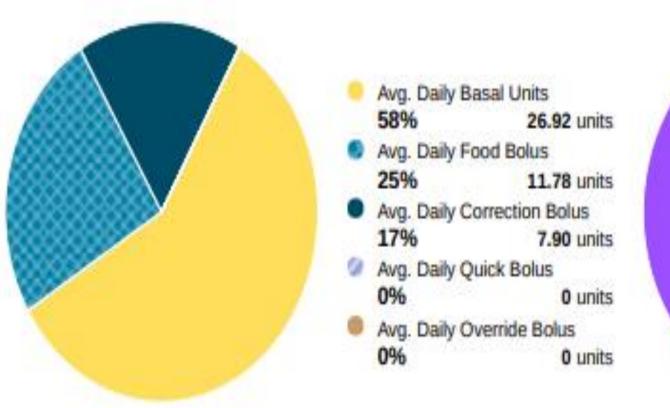
Average Total Daily Dose	46.57 units / day			₹ 10% * E
Average BG Tests	0.57 times / day			Total Billion
Average CGM Readings	243.43 times / day			
	Cartridge	Tubing	Site/Cannula	
Avg. Change Frequency	Every 3.00 days	Every 3.00 days	Every 3.00 days	
Avg. Fill Amount	120.00 units	11.82 units	0.50 units	

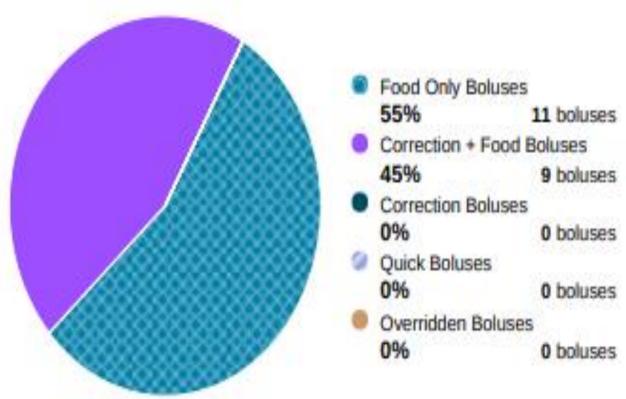

Device Settings

WOrk Profile Active at the time of uploa					
Start Time	Basal Rate	Correction Factor	Carb Ratio	Target BG	
Midnight	1.200 u/hr	1u:30 mg/dL	1u:6.0 g	100 mg/dL	
3:00 AM	1.300 u/hr	1u:30 mg/dL	1u:6.0 g	100 mg/dL	
9:00 AM	1.000 u/hr	1u:30 mg/dL	1u:9.0 g	100 mg/dL	
4:00 PM	1.000 u/hr	1u:30 mg/dL	1u:9.0 g	100 mg/dL	
8:00 PM	1.200 u/hr	1u:30 mg/dL	1u:9.0 g	100 mg/dL	
Calculated Total Daily Basal	27.2 units				
Duration of Insulin: 5:00 hours Carbohydrates: On Max Bolus: 15 units					

Settings					
Alerts		Pump Settings			
Alert: Auto-Off	On 12 hrs	Quick Bolus	Off		
Alert: Low Insulin	20 u	Screen Timeout	On 120 sec		
Reminders		Feature Lock	Off		
Low BG	Off	Pump Volume: Button	Low		
High BG	Off	Pump Volume: Quick Bolus	High		
Site Change Reminder	On 3 days 2:00 PM	Pump Volume: Bolus	High		
Missed Meal Bolus: Reminder 1		Pump Volume: Reminders	Low		
Missed Meal Bolus: Reminder 2		Pump Volume: Alerts	Low		
Missed Meal Bolus: Reminder 3		Pump Volume: Alarms	Low		
Missed Meal Bolus: Reminder 4	-				
After Bolus BG	Off				

CGM Summary

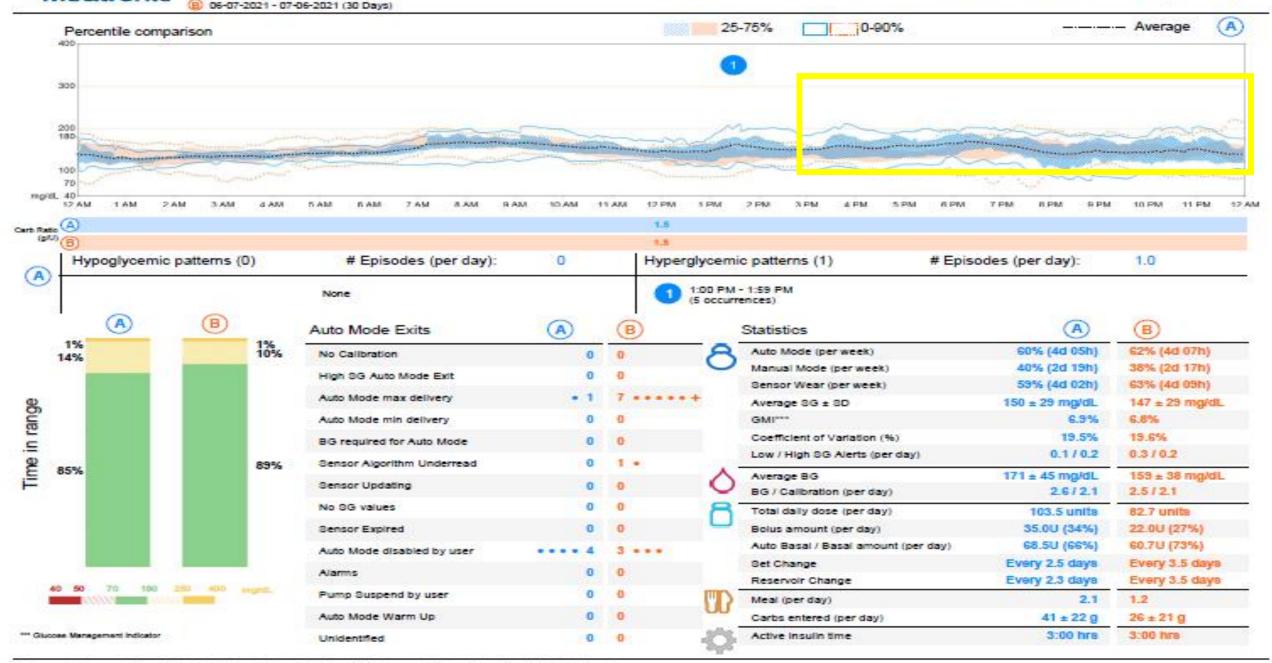

Blood Glucose Summary



Average CGM	147 mg/dL	Average BG	181 mg/dL
Standard Deviation	46.8 mg/dL	Standard Deviation	46.3 mg/dL

Insulin Delivery Summary

Bolus Usage Summary



Average Total Daily Dose	46.57 units/day	Average Boluses	7.57 /day	
Average Daily Carbs	103 grams/day	Stopped Boluses	1.00 boluses	

Pt RM

*** Glucose Management Indicator

Summary

- Advanced diabetes technology holds the promise to be beneficial for all patients with diabetes
- Technologies provide insight in targeting a rational, safe and comprehensive approach to glycemic management
- Patients using advanced technology have been able to improve their time in range,
 reduce risk of and time spent within hypoglycemia, improve quality of life

THANK YOU!!

