2021 ACOI Annual Convention And Scientific Sessions October 27-30

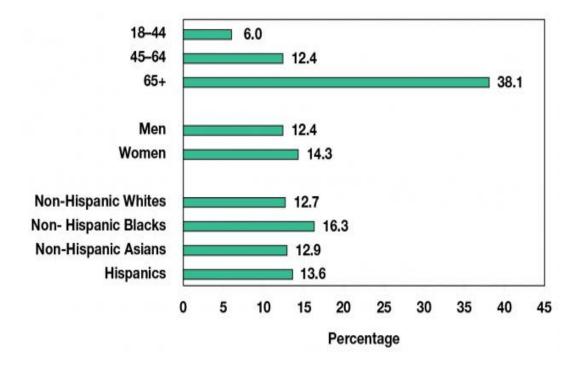
Filtering Out The Potential Role Of <u>SGLT2</u> <u>Inhibitors</u> For The Management Of Chronic Kidney Disease

Lubaina S. Presswala, D.O. Assistant Professor & Endocrinologist Northwell Health, New York

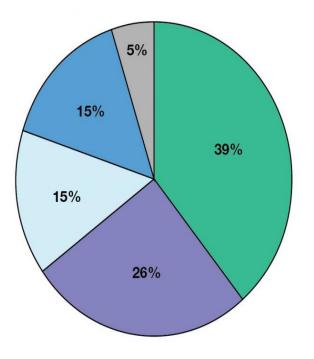
Disclosures

None

2021 ACOI Annual Convention and Scientific Sessions October 27-30


Objectives

- Explain the burden of chronic kidney disease
- Review the pathophysiology of diabetic nephropathy
- Understand the mechanism of SGLT2 inhibitors in the management of CKD
- Evaluate the clinical trial data for SGLT2 inhibitors and renal outcomes
- Summarize the role of SGLT2 inhibitors in clinical practice

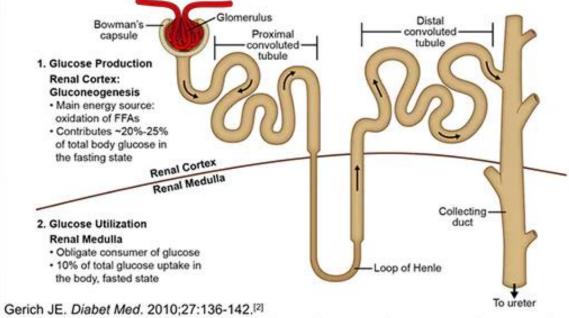


The Burden of Chronic Kidney Disease (CKD)

Percentage of US ADULTS aged 18 years or older with CKD

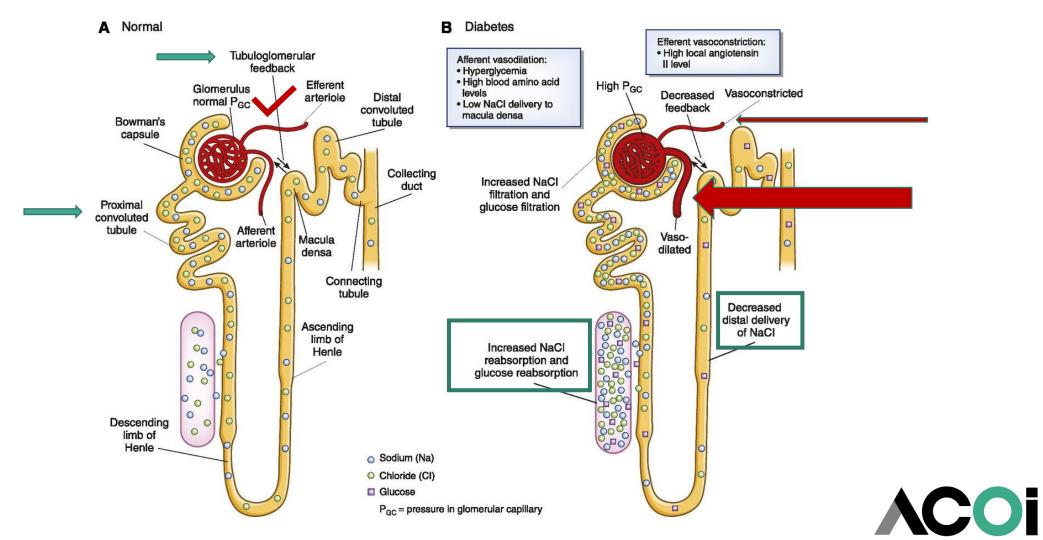
Reported Causes of End-Stage Renal Disease (ESRD) in the United States

Diabetes
 High Blood Pressure
 Glomerulonephritis
 Other Cause*
 Unknown Cause

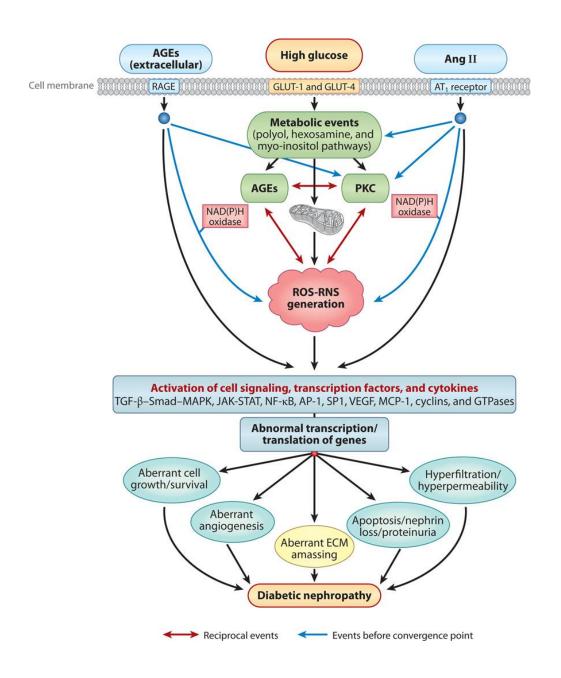

N=785,883 (all ages, 2018) Source: US Renal Data System *Includes polycystic kidney disease, among other causes.

Center for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2021

Kidney Physiology


- 20-25% of the total body's glucose is released by the kidneys
- Approximately 180 grams of glucose is filtered by the kidneys everyday
- Mostly all of it is reabsorbed by sodiumglucose co-transporter 2 expressed in the proximal tubules

The Kidney Handles Glucose By Two Key Mechanisms


Tortora GJ, et al. In: Tortora GJ, Derrickson B, eds. *Principles of Anatomy and Physiology*. 13th ed. Hoboken, NJ: John Wiley & Sons, Inc; 2009:977-1061.^[3]

Normal & Diabetic Nephron

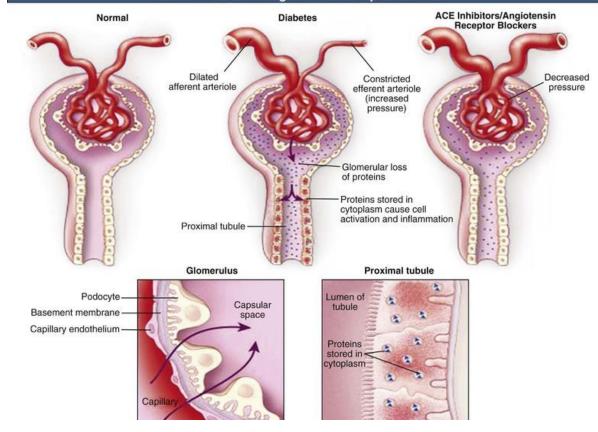
Diabetic Nephropathy

- HyperfiltrationSilentMicroalbuminuria
- Macroalbuminuria
- Renal Impairment

Albuminuria (ACR) categories (mg/g)

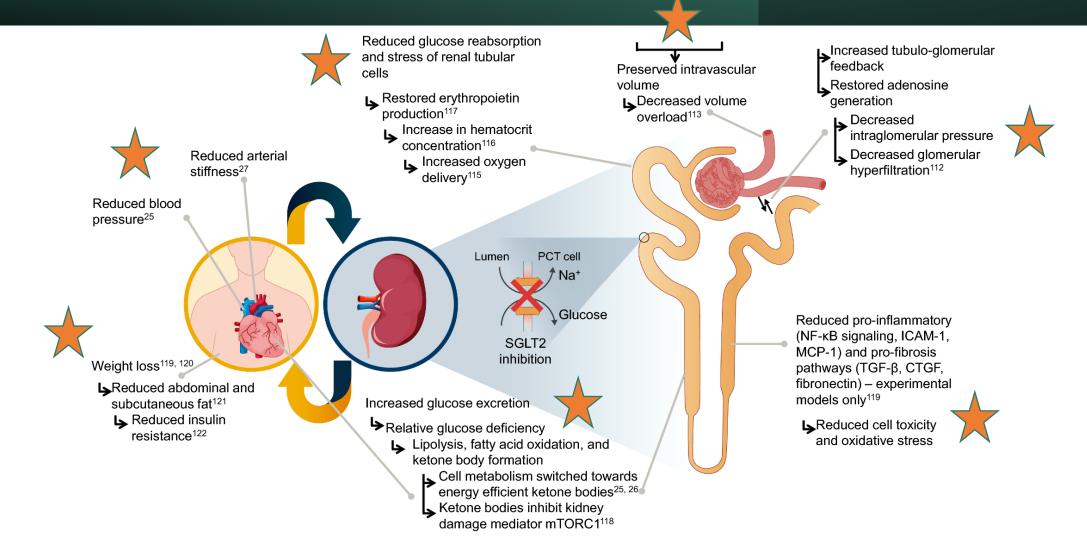
			A1	A2	A3
			Normal to mildly increased	Moderately increased	Severely increased
			<30	30–300	>300
G1	Normal or high	≥90			
G2	Mildly decreased	60–89			
G3a	Mildly to moderately decreased	45–59			
G3b	Moderately to severely decreased	30–44			
G4	Severely decreased	15–29			
G5	Kidney failure	<15			

Renin-Angiotensin-System Inhibitors


Angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs)

- ✓ Reduce blood pressure
- ✓ Reduce proteinuria

IDNT Study RENAAL Study


- 1. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. *N Engl J Med.* 2001; **345**: 851-860
- 2. Brenner BM, Cooper ME, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. *N Engl J Med*. 2001; **345**: 861-869

Nephron Changes in Diabetes and After Administration of an ACE Inhibitor or Angiotensin Receptor Blocker

Wolf, Sharma. Pathogenesis, Clinical Manifestations, and Natural History of Diabetic Nephropathy.

The Role of SGLT2 Inhibitors in Chronic Kidney Disease

Summary of Normal and Diabetic Kidneys

- Hyperfiltration initiates diabetic kidney disease mediated by SGLT2
- Proteinuria reduction provides renal protection
- Angiotensin blockade improves outcomes
- Blood pressure control improves renal outcomes
- Glycemic control improves microvascular disease outcomes

FDA Approved Indications for SGLT2-I

(May 2021)

Indication	Canagliflozin	Dapagliflozin	Empagliflozin	Ertugliflozin
Antiglycemic	As an adjunct to diet and exerc	ise to improve glycemic contro	l in adults with type 2 diabo	etes mellitus
CV disease	Reduce the risk of Major Adverse Cardiovascular Events in adults with type 2 diabetes mellitus and established cardiovascular disease (CVD) MACE: cardiovascular death, nonfatal myocardial infarction and nonfatal stroke)	Reduce the risk of hospitalization for heart failure in adults with type 2 diabetes mellitus and established cardiovascular disease or multiple risk factors	Reduce the risk of cardiovascular death in adult patients with type 2 diabetes mellitus and established cardiovascular disease.	
Heart Failure	(partial – see below)	Reduce the risk of cardiovascular death and hospitalization for heart failure in adults with heart failure with reduced ejection fraction NYHA II-IV	Approved in patients with HF with reduced ejection fraction	
Renal Disease	Reduce the risk of end-stage kidney disease doubling of serum creatinine, cardiovascular death, and hospitalization for heart failure in adults with type 2 diabetes mellitus and diabetic nephropathy with albuminuria > 300 mg/day	Breakthrough Therapy Designation (BTD) in the US for patients with CKD with and without type-2 diabetes	Approved in patients with CKD and HFrEF	

FDA Approved Indications for SGLT2-I

	Canagliflozin (®Invokana)	Dapagliflozin (®Farxiga)	Empagliflozin (®Jardiance)	Ertugliflozin (®Steglatro)
Doses	100 mg, 300 mg	5 mg, 10 mg	10 mg, 25 mg	5 mg, 15 mg
eGFR>60	No change	No change	No change	No change
eGFR 45-60	100 mg only	No change	No change	Don't start
eGFR 30-45	Don't start (cont 100 mg)	Don't start	Don't start	Don't start
eGFR <30	Only 100 mg QD if Albuminuria>300mg/g	*GFR>25: Can initiate in HF or CKD, continue <25	Only in patients with HFrEF	Contraindicated
FDA Approved	March 2013	January 2014	August 2014	December 2017

Cardiovascular Safety Trials

Trials	#N & Follow- Up	Mean A1c%	Mean eGFR (ml/min/1.73 m²)	Primary Outcome
DECLARE-TIMI 58	17,160 4.2 years	8.3%	85.2	3-P MACE Composite of CV death or HHF
CANVAS	10,142 3.6 years	8.3%	76.5	3-P MACE
EMPA-REG	7020 3.1 years	8.1%	74	3-P MACE
VERTIS-CV	8238 3.5 years	8.2%	76	3-P MACE

Williams DM, Nawaz A, Evans M. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors: Diabetes Ther. 2021

Cardiovascular Safety Trials: Meta Analysis

	Patients		Events	Events per 1000 patie	nt-years	Weight (%)	HR		HR (95% CI)
	Treatment (n/N)	Placebo (n/N)		Treatment	Placebo				
Patients with atheros	clerotic cardiova	scular disease							
EMPA-REG OUTCOME	4687/7020	2333/7020	772	37.4	43·9	29.4			0.86 (0.74–0.99)
CANVAS Program	3756/6656	2900/6656	796	34.1	41·3	32.4			0.82 (0.72-0.95)
DECLARE-TIMI 58	3474/6974	3500/6974	1020	36.8	41·0	38.2	_ _		0.90 (0.79-1.02)
Fixed effects model fo	or atheroscleroti	c cardiovascula	ar disease	e (p=0·0002)			◆		0·86 (0·80-0·93
Patients with multipl	e risk factors								
CANVAS Program	2039/3486	1447/3486	215	15.8	15.5	25.9			0.98 (0.74–1.30)
DECLARE-TIMI 58	5108/10186	5078/10186	539	13·4	13.3	74·1	#		1.01 (0.86-1.20)
Fixed effects model fo	or multiple risk fa	actors (p=0.98)				-		1.00 (0.87-1.16)
						0.35 0.5	50 1.00	2.50	
						Favor	← Favours p	→ lacebo	

Figure 1: Meta-analysis of SGLT2i trials on the composite of myocardial infarction, stroke, and cardiovascular death (major adverse cardiovascular events) stratified by the presence of established atherosclerotic cardiovascular disease

Cardiovascular Safety Trials: Meta Analysis

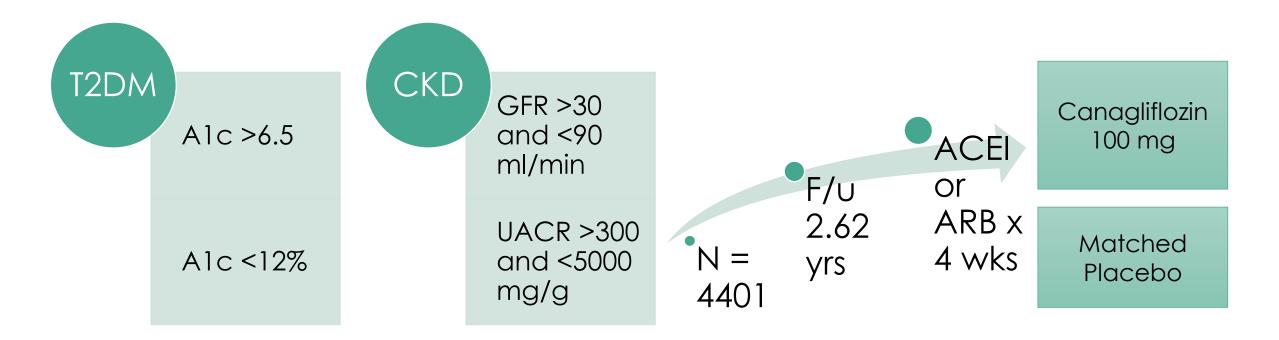
	Patients		Events	Events per patient-yea		Weight (%)	HR		HR (95% CI)
	Treatment (n/N)	Placebo (n/N)		Treatment	Placebo				
Patients with atheros	sclerotic cardiova	scular disease							
EMPA-REG OUTCOME	4687/7020	2333/7020	463	19.7	30.1	30.9			0.66 (0.55-0.79)
CANVAS Program	3756/6656	2900/6656	524	21.0	27.4	32.8			0.77 (0.65-0.92)
DECLARE-TIMI 58	3474/6974	3500/6974	597	19.9	23.9	36.4			0.83 (0.71-0.98
Fixed effects model for	or atherosclerotic	cardiovascula	r disease	(p<0.0001)			•		0.76 (0.69-0.84
Patients with multipl	e risk factors								
CANVAS Program	2039/3486	1447/3486	128	8.9	9.8	30.2		_	0.83 (0.58-1.19)
DECLARE-TIMI 58	5108/10186	5078/10 186	316	7.0	8.4	69.8	₩		0.84 (0.67-1.04)
Fixed effects model for	o <mark>r multiple risk f</mark> a	ctors (p=0.06	34)						0.84 (0.69–1.01
						0.35	0.50 1.00	2.50	
							Favours treatment	Favours placebo	

Figure 2: Meta-analysis of SGLT2i trials on hospitalisation for heart failure and cardiovascular death stratified by the presence of established atherosclerotic cardiovascular disease

	EMPA-REG ¹	CANVAS Program ²	DECLARE-TIMI 58 Trial ³
	 New-onset macroalbuminuria Doubling of serum creatinine (+eGFR <45 ml/min/1.73 m2) Initiation of RRT Death due to renal disease 	 Albuminuria progression Albuminuria regression 40% reduction in eGFR End-stage renal disease Renal death 	 Decreased of 40% or more eGFR EGFR drop to <60 ml/min/1.73m2 New end-stage renal disease Death from renal or CV causes
	38% reduction in "incident or worsening nephropathy"	40% reduction in composite of >40% reduction in eGFR, requirement for RRT and death from renal cause	24% reduction in composite of >40% reduction in eGFR, new ESRD or death from renal or CV causes
l	Wanner, C., S. E. Inzucchi, et al. (2016). <u>New England Journ</u> Perkovic, V., D. de Zeeuw, et al. (2018). <u>The Lancet Diabete</u> Mosenzon, O., S. D. Wiviott, et all, <u>The Lancet Diabetes & Er</u>	es & Endocrinology 6(9): 691-704	

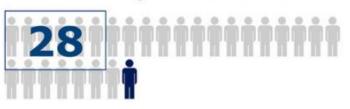
SGLT2 Inhibitor Trial – Renal Focus

			Albuminu	ria stages, description a		
			A1	A2	A3	
			Normoalbuminuria	Microalbuminuria	Macroalbuminuria	CREDENCE (DKD only) eGFR ≥30 to <90 mL/min/1.73 m ²
			<30 mg/g	30–300 mg/g	>300 mg/g	and UACR \geq 300 mg/g
3 m²)	Stage 1	≥90				
in/1.73	Stage 2	60–89		5		DAPA-CKD (CKD) eGFR ≥25 to <75 mL/min/1.73 m ²
(mL/min/1	Stage 3a	45–59				and UACR ≥200 mg/g
	Stage 3b	30–44				EMPA-KIDNEY (CKD)
categ	Stage 3b Stage 4	15–29				eGFR ≥45 to <75 mL/min/1.73 m ² and UACR ≥200 mg/g
GFR	ESKD 5	<15				OR eGFR ≥20 to <45 mL/min/1.73 m²

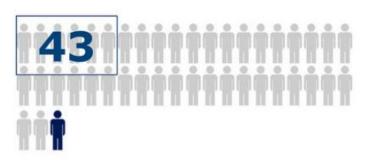

E=EMPA-REG OUTCOME; C=CANVAS; D=DECLARE-TIMI 58

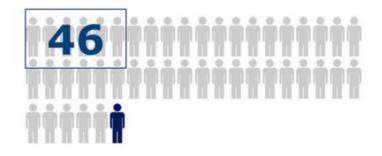
Renal & Cardiac Outcome Trials

Trials	#N & Follow-Up	Mean A1c%	Mean eGFR (ml/min/1.73 m2)	Primary Outcome
DAPA-CKD	4304 2.4 years	T2DM: 67% Non DM: 33%	43.1	Composite of sustained≥50% eGFR decline, ESRD, renal death or CV death
CREDENCE	4401 2.6 years	8.3%	56.2	A composite of ESRD, doubling serum creatinine, or death from renal or CV disease
DAPA-HF	4744 1.5 years	T2DM: 42% Non DM: 58%	65.8	Composite of worsening HF or CV Death
EMPEROR Reduced	3730 1.2 years	T2DM: 50% Non DM: 50%	62	A composite of CV death or HHF


The primary outcome was a composite of

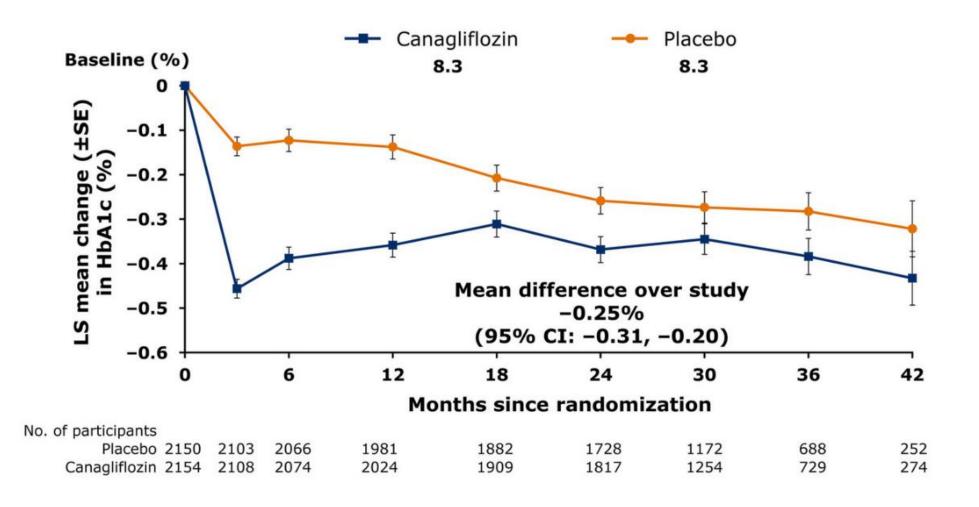
- end-stage kidney disease (dialysis for at least 30 days, kidney transplantation, or an estimated GFR of <15 ml per minute per 1.73 m² sustained for at least 30 days),
- doubling of the serum creatinine level from baseline sustained for at least 30 days, or
- death from renal or cardiovascular disease.


Primary composite outcome

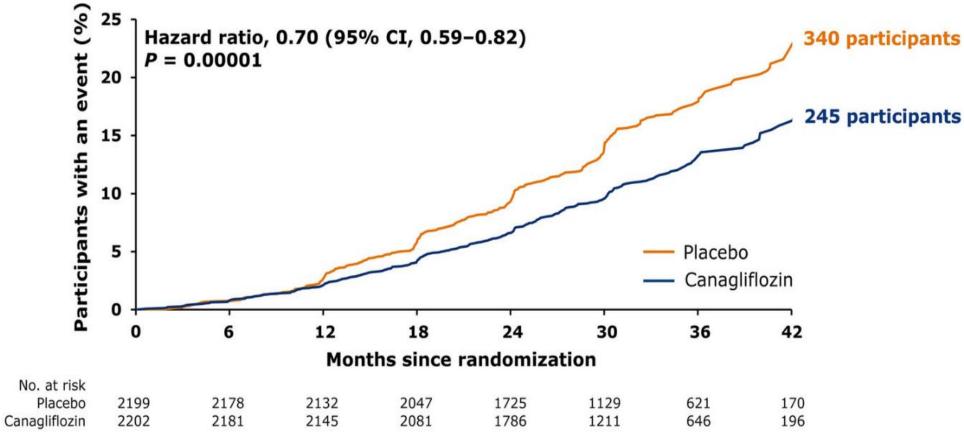

ESKD, doubling of serum creatinine, or renal death

ESKD

Hospitalization for heart failure

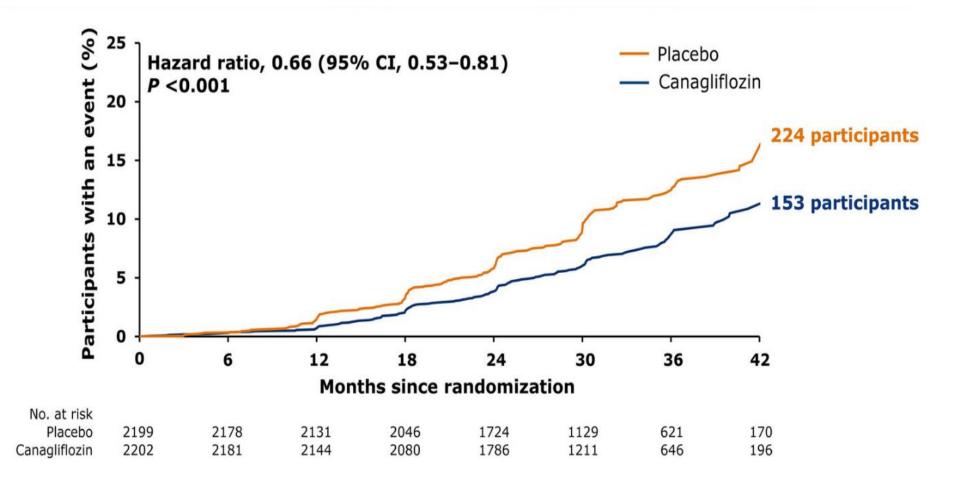


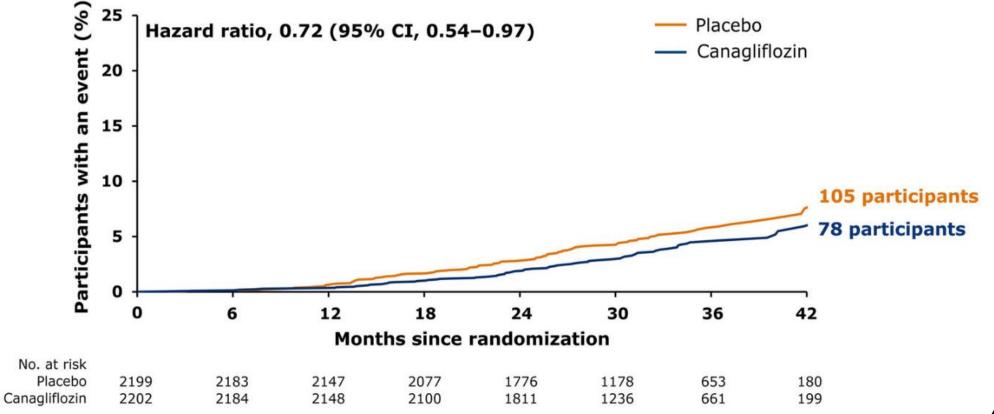
CV death, MI, or stroke



CREDENCE (CANVAS)

Primary Outcome: ESRD, Doubling of Serum Creatinine, or Renal or CV Death




Perkovic, V., M. J. Jardine, et al. (2019). NEJM

ESKD, Doubling of Serum Creatinine, or Renal Death

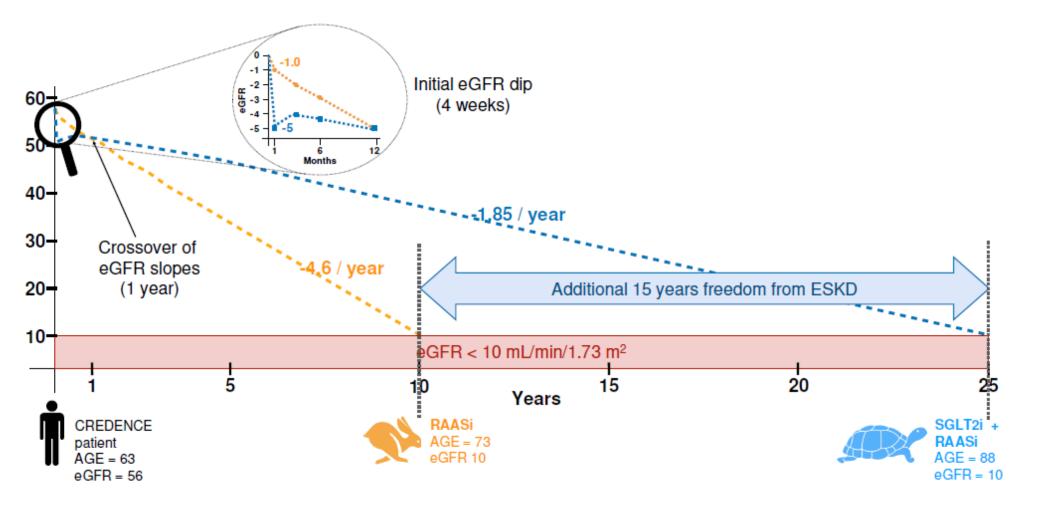
Dialysis, Kidney Transplantation, or Renal Death

	Hazard ratio (95% CI)		P value
Primary composite outcome		0.70 (0.59-0.82)	0.00001
Doubling of serum creatinine		0.60 (0.48-0.76)	<0.001
SKD	 -	0.68 (0.54-0.86)	0.002
eGFR <15 mL/min/1.73 m ²		0.60 (0.45-0.80)	-
Dialysis initiated or kidney transplantation		0.74 (0.55-1.00)	
nal death 🔶	•	0.39 (0.08-2.03)	-
death		0.78 (0.61-1.00)	0.0502
D, doubling of serum creatinine, or renal death		0.66 (0.53-0.81)	<0.001
lysis, kidney transplantation, or renal death*		0.72 (0.54-0.97)	=
0.25	0.5 1.0 2.0	4.0	
Favors Car	nagliflozin Favors Pl	acebo	

Subgroup	Canaglifloziı	1 Placebo	Canagliflozin	Placebo	Hazard Rat	io (95% CI)		Value for teraction
5	no. of patien		events/1000			(
Primary composite outcome of ESKD doubling of serum creatinine, or renal or CV death	,							
Screening estimated GFR					1			0.11
30 to <45 ml/min/1.73 m ²	119/657	153/656	72.2	95.4	⊢ ●–-	0.7	75 (0.59–0.95)	
45 to <60 ml/min/1.73 m ²	56/640	102/639	33.4	63.1		0.5	52 (0.38-0.72)	
60 to <90 ml/min/1.73 m ²	70/905	85/904	29.9	36.5	┝┿╼┥	0.8	32 (0.60–1.12)	
Baseline UACR					1			0.49
≤1000	69/1185	88/1163	22.0	28.8	┝━━━┤	0.7	76 (0.55–1.04)	
>1000	176/1017	252/1036	69.6	100.8		0.6	57 (0.55-0.81)	
Renal-specific composite outcome of ESKD, doubling of serum creatinine, or renal death								
Screening estimated GFR					i			0.18
30 to <45 ml/min/1.73 m ²	85/657	115/656	51.6	71.7		0.7	71 (0.53–0.94)	
45 to <60 ml/min/1.73 m ²	33/640	66/639	19.7	40.8 -		0.4	47 (0.31-0.72)	
60 to <90 ml/min/1.73 m ²	35/905	43/904	14.9	18.5	┝┼╸┽┤	0.8	31 (0.52–1.26)	
Baseline UACR					1			0.16
≤1000	29/1185	31/1163	9.2	10.2			90 (0.54-1.50)	
>1000	124/1017	193/1036	49.1	77.2		0.6	51 (0.49-0.76)	
				0.25	0.50 1.00	2.00 4.00		
				C	anagliflozin Better	Placebo Better		

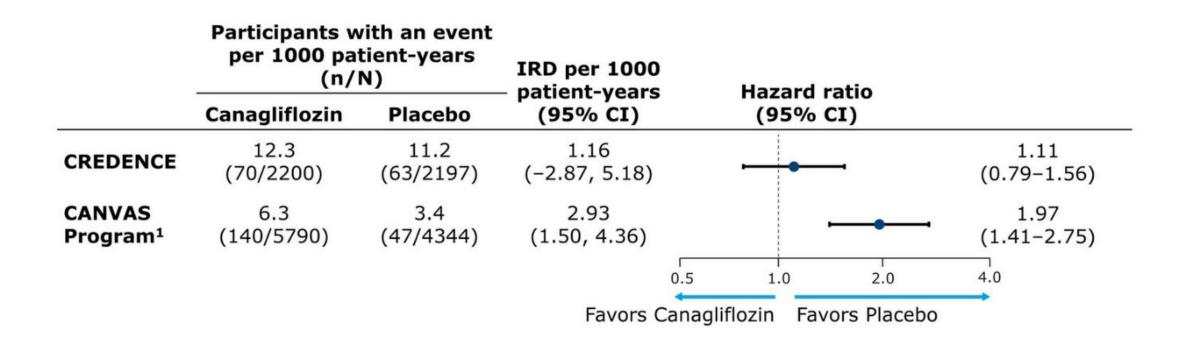
CREDENCE – All AE

	Number of p with an e	•		
	Canagliflozin (N = 2200)	Placebo (N = 2197)	Hazard ratio (95% CI)	
Male genital mycotic infections*	28	3	· • • • • • • • • • • • • • • • • • • •	9.30 (2.83-30.60)
Female genital mycotic infections ⁺	22	10	—	2.10 (1.00-4.45)
Urinary tract infections	245	221	-	1.08 (0.90-1.29)
Volume depletion-related AEs	144	115		1.25 (0.97-1.59)
Malignancies [‡]	98	99		0.98 (0.74-1.30)
Renal cell carcinoma	1	5	←●	0.20 (0.02-1.68)
Breast ⁺	8	3	· · · · · · · · · · · · · · · · · · ·	2.59 (0.69-9.76)
Bladder	10	9		1.10 (0.45-2.72)
Acute pancreatitis	5	2	• • • • • • • • • • • • • • • • • • •	2.44 (0.47-12.59)
Diabetic ketoacidosis	11	1		10.80 (1.39-83.65)
Includes all treated participants through 30 days after last do which includes all treated patients through the end of the tria			125 0.25 0.5 1.0 2.0 4.0 8.0 16.0 3 anagliflozin Favors Placebo	2.0


ACOi

CREDENCE – Renal AE

	Number of participants with an event, n		
	Canagliflozin Placebo (N = 2200) (N = 2197)	Hazard ratio (95% CI)	
All renal-related AEs	290 388		0.71 (0.61-0.82)
Hyperkalemia	151 181		0.80 (0.65-1.00)
Acute kidney injury	86 98	·•	0.85 (0.64-1.13)
	Favors	0.5 1.0 s Canagliflozin Favors P	2.0 Placebo

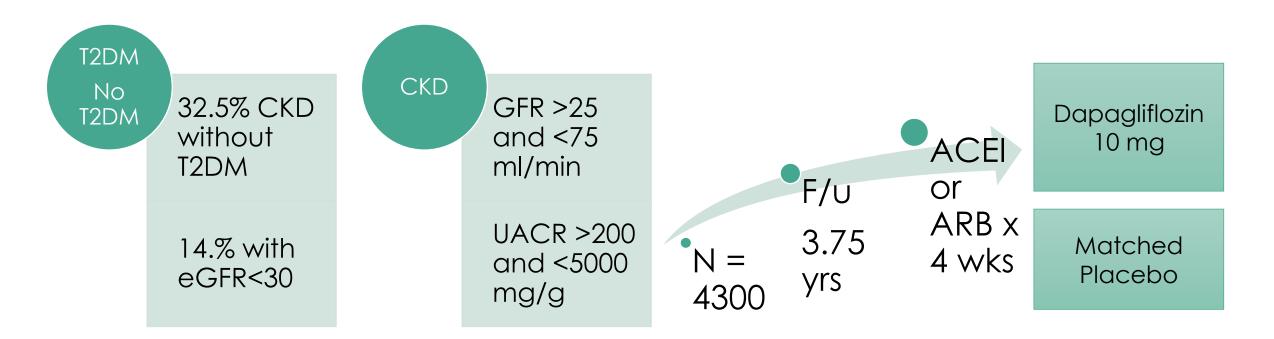


Induced Acute Kidney Injury

CREDENCE – Lower Extremity Amputation

CREDENCE - SUMMARY

- Canagliflozin reduced the risk of primary outcomes of ESRD, doubling of serum creatinine, or renal or CV death by 30% (P=0.00001)
- Canagliflozin also reduced the risk of secondary outcomes of ESRD, doubling of serum creatinine, or renal death by 34% (P<0.001)



CREDENCE - SUMMARY

- Similar risk reductions were seen for exploratory outcomes assessing components of the primary outcome:
 - ESRD: 32% lower
 - Dialysis, transplantation, or renal death: 28% lower
- Canagliflozin attenuated the slope of chronic eGFR decline by 2.7ml/min/1.73m2/year

The primary outcome was the first occurrence of any of the following:

- A decline of at least 50% in the eGFR
- The onset of end stage kidney disease (dialysis maintained for >28 days, kidney transplantation, or an eGFR < 15 ml/min confirmed by serial measurement after 28 days)
- Death from renal or CV cause

DAPA – CKD: Secondary Outcomes

Time to a composite renal endpoint:

- \geq 50% eGFR decline from baseline
- ESRD defined as eGFR <15 mL/min/1.73 m2, need for chronic dialysis or renal transplantation
- Renal death

Time to the first occurrence of either cardiovascular death or hospitalization for heart failure

Time to death from any cause

DAPA – CKD: Baseline Characteristics

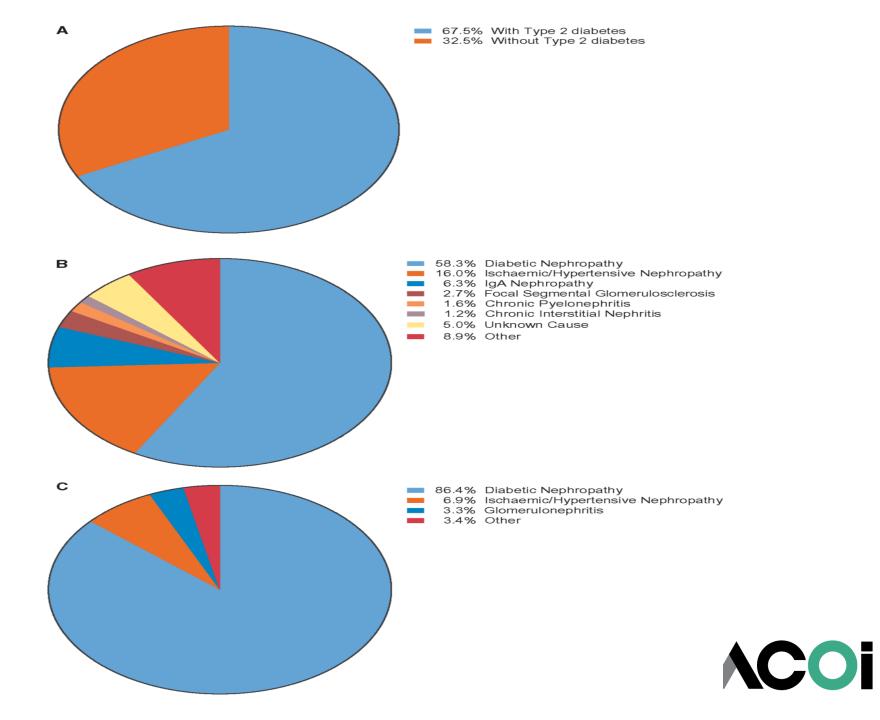
Characteristic	Overall	With T2D	Without T2D
	(<i>N</i> = 4304)	(<i>n</i> = 2906)	(<i>n</i> = 1398)
Age (years), mean (SD)	61.8 (12.1)	64.4 (9.7)	56.4 (14.6)
≤65 years, <i>n</i> (%)	2486 (57.8)	1507 (51.9)	979 (70.0)
>65 years, <i>n</i> (%)	1818 (42.2)	1399 (48.1)	419 (30.0)
Gender, <i>n</i> (%)			
Male	2879 (66.9)	1941 (66.8)	938 (67.1)
Female	1425 (33.1)	965 (33.2)	460 (32.9)
Race, <i>n</i> (%)			
White	2290 (53.2)	1541 (53.0)	749 (53.6)
Black	191 (4.4)	137 (4.7)	54 (3.9)
Asian	1467 (34.1)	932 (32.1)	535 (38.3)
American Indian/Alaska native	136 (3.2)	111 (3.8)	25 (1.8)
Other	220 (5.1)	185 (6.4)	35 (2.5)

Heerspink et al. Dapagliflozin in patients with chronic kidney disease. NEJM, 2020

DAPA – CKD: Baseline Characteristics

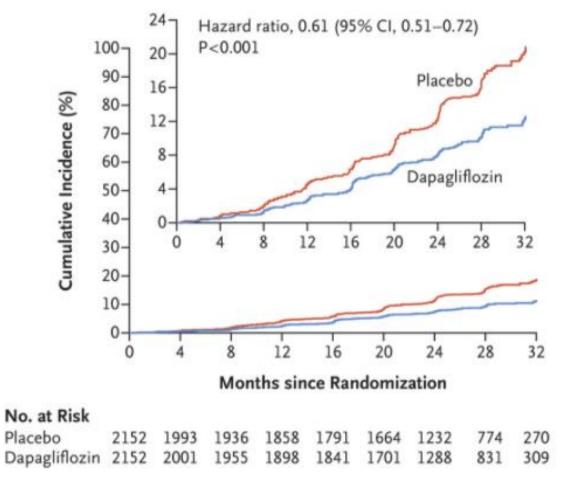
Blood pressure (mmHg), mean (SD)

Systolic	137.1 (17.4)	139.2 (17.3)	132.6 (16.7)
Diastolic	77.5 (10.5)	76.5 (10.1)	79.6 (10.9)
Systolic blood pressure categories, <i>n</i> (%)			
>130 mmHg	2762 (64.2)	2033 (70.0)	729 (52.1)
>140 mmHg	1684 (39.1)	1273 (43.8)	411 (29.4)
Mean BMI (kg/m ²)	n = 4296	n = 2899	n = 1397
	29.5	30.3	27.9
HbA _{1c}	<i>n</i> = 4284	n = 2893	n = 1391
%, mean (SD)	7.1 (1.7)	7.8 (1.7)	5.6 (0.4)
mmol/mol, mean (SD)	54 (19)	62 (19)	38 (4)
Haemoglobin (g/L), mean (SD)	n = 4278	n = 2892	n = 1386
	128.3 (18.1)	125.9 (17.9)	133.1 (17.6)

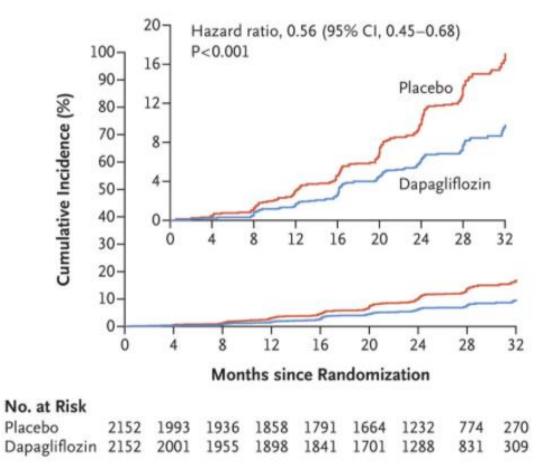


DAPA – CKD: Baseline Characteristics

Serum creatinine (mg/dL), mean (SD)	1.7 (0.5)	1.6 (0.5)	1.8 (0.5)
eGFR (mL/min/1.73 m ²), mean (SD)	43.1 (12.4)	43.8 (12.6)	41.7 (11.7)
eGFR categories(mL/min/1.73 m ²), <i>n</i> (%)			
≥60	454 (10.5)	348 (12.0)	106 (7.6)
45–59	1328 (30.9)	918 (31.6)	410 (29.3)
30-44	1898 (44.1)	1239 (42.6)	659 (47.1)
<30	624 (14.5)	401 (13.8)	223 (16.0)
Baseline UACR (mg/g), median	949.3	1016.5	861.0
Baseline median UACR categories, <i>n</i> (%)			
<30 mg/g (Stage A1)	1 (0.0)	1 (0.0)	0 (0.0)
30–300 mg/g (Stage A2)	444 (10.3)	308 (10.6)	136 (9.7)
	3859 (89.7)	2597 (89.4)	1262 (90.3)


Baseline Characteristics DAPA-CKD

Wheeler et al, NDT 2020


Primary Composite Outcome

Secondary Outcome

DAPA – CKD **Primary and Secondary Outcomes**

Outcome	Dapagliflozin		Place	ebo	Hazard Ratio (95% CI)	P Value	
	no./total no. (%)	events/100 patient-yr	no./total no. (%)	events/100 patient-yr			
Primary outcome							
Primary composite outcome	197/2152 (9.2)	4.6	312/2152 (14.5)	7.5	0.61 (0.51–0.72)	<0.001	
Decline in estimated GFR of ≥50%	112/2152 (5.2)	2.6	201/2152 (9.3)	4.8	0.53 (0.42-0.67)	NA	
End-stage kidney disease	109/2152 (5.1)	2.5	161/2152 (7.5)	3.8	0.64 (0.50-0.82)	NA	
Estimated GFR of <15 ml/min/1.73 m ²	84/2152 (3.9)	1.9	120/2152 (5.6)	2.8	0.67 (0.51–0.88)	NA	
Long-term dialysis†	68/2152 (3.2)	1.5	99/2152 (4.6)	2.2	0.66 (0.48-0.90)	NA	
Kidney transplantation†	3/2152 (0.1)	0.1	8/2152 (0.4)	0.2	-	NA	
Death from renal causes	2/2152 (<0.1)	0.0	6/2152 (0.3)	0.1	—	NA	
Death from cardiovascular causes	65/2152 (3.0)	1.4	80/2152 (3.7)	1.7	0.81 (0.58–1.12)	NA	
Secondary outcomes							
Composite of decline in estimated GFR of ≥50%, end-stage kidney disease, or death from renal causes	142/2152 (6.6)	3.3	243/2152 (11.3)	5.8	0.56 (0.45–0.68)	<0.001	
Composite of death from cardiovascular causes or hospitalization for heart failure	100/2152 (4.6)	2.2	138/2152 (6.4)	3.0	0.71 (0.55–0.92)	0.009	
Death from any cause	101/2152 (4.7)	2.2	146/2152 (6.8)	3.1	0.69 (0.53–0.88)	0.004	

Months since Randomization No. at Risk

12

12

CV and Death Outcomes

Composite of Death from Cardiovascular

Cause or Hospitalization for Heart Failure

P=0.009

DAPA – CKD

10.

8

6-

4

2

100-

90-

80-

70-

60-

50-

40-

30-

20-

10-

0

0

Cumulative Incidence (%)

Placebo	2152	2023	1989	1957	1927	1853	1451	976	360
Dapagliflozin	2152	2035	2021	2003	1975	1895	1502	1003	384

No. at Risk									
Placebo	2152	2035	2018	1993	1972	1902	1502	1009	37

Hazard ratio, 0.71 (95% CI, 0.55-0.92) 100 -

Placebo

Dapagliflozin

28

32

32

24

24

20

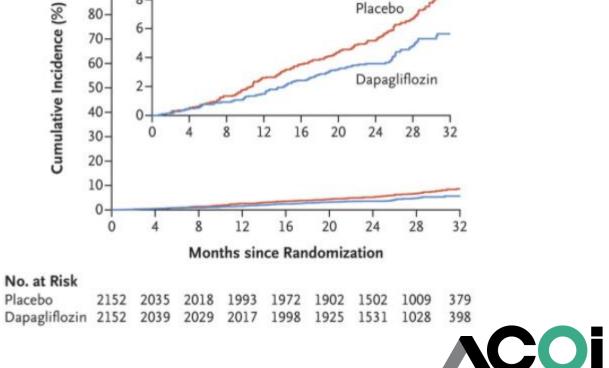
20

16

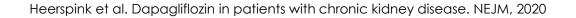
6

Death from any cause

P=0.004

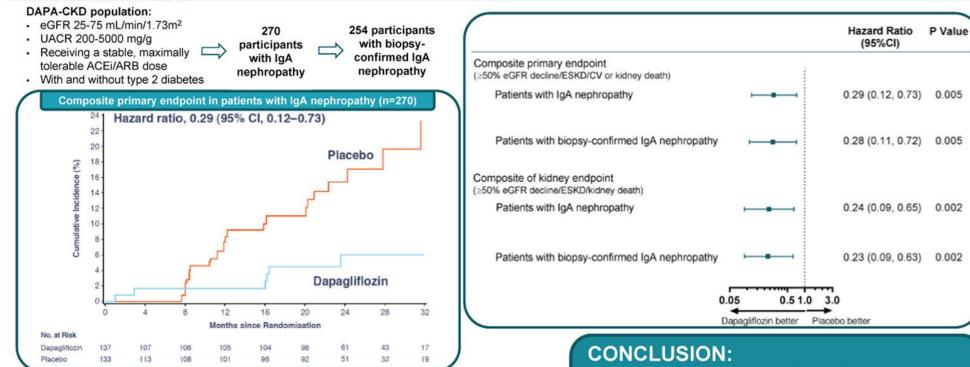

12-

10-


8-

90-

Cumulative Incidence (%)



Hazard ratio, 0.69 (95% CI, 0.53-0.88)

DAPA – CKD & IgA Nephropathy

A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy.

In patients with IgA nephropathy, when added to ACEi/ARB therapy, dapagliflozin significantly and substantially reduced the risk of CKD progression

ACOi

IgA, immunoglobulin A; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blockers; CKD, chronic kidney disease; ESKD, end-stage kidney disease

Wheeler et al, 2021

DAPA – CKD vs. CREDENCE

- Credence recruited patients with T2DM and CKD with eGR>30 ml/min/1.73m2
- DAPA-CKD included CKD patients with and without T2DM
 - 32.5% of patients with CKD did not have T2DM
 - 14.5% patients had an eGFR below 30 ml/min/1.73 m2

Is This A Class Effect?

Double-blind, Placebo-controlled, Multicentric RCT (N=4401)

Inclusion: Type 2 DM eGFR: ≥30- 90 and UACR: >300-≤5000 mg/g Median follow up -2.62 yrs

Canagliflozin VS placebo

CREDENCE

2019

Composite of ESKD, 2 X S.cr , or kidney related or CV death HR 0.70; (0.59 to 0.82)

CV death, MI, or stroke- HR 0.80, (0.67 -0.95) Hospitalization for heart failure HR 0.61; (0.47 to 0.80)

Double-blind, Placebo-controlled, Multicentric RCT (N=4304)

Inclusion: With or without DM eGFR: ≥25-75 and UACR: ≥200-≤5000 mg/g Median follow up -2.4 yrs

Dapagliflozin VS placebo

DAPA-CKD

2020

Composite of sustained decline in eGFR of at least 50%, ESKD, or death from renal causes-HR 0.56; (0.45 to 0.68)

Composite of death from CV causes or hospitalization for heart failure HR 0.71; (0.55 to 0.92) Double-blind, Placebo-controlled, Multicentric parallel group RCT (N=5000)

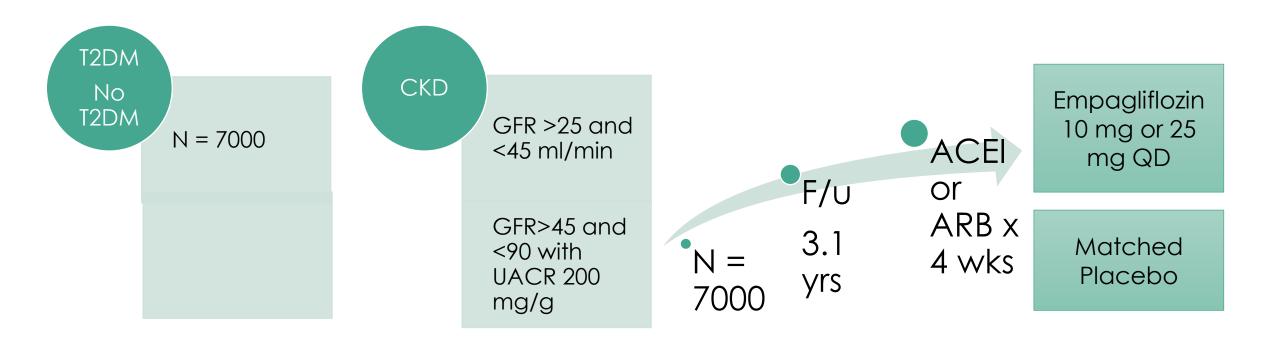
Inclusion: With or without DM eGFR: ≥20-45 or eGFR ≥45 to <90 with UACR ≥200 mg/g

Empagliflozin VS placebo

EMPA-KIDNEY

Results awaited

2022


Primary outcomes: Kidney disease progression (defined as ESKD, a sustained decline in eGFR to <10 mL/min/1.73m², renal death, or a sustained decline of ≥40% in eGFR or CV death

Infographic by- Priti Meena, M.D 😏 @Priti899

Wheeler et al, NDT 2020

EMPA-KIDNEY

The composite primary outcome:

-Time to first occurrence of (i) kidney disease progression (defined as ESKD, a sustained decline in eGFR to <10 mL/min/1.73m², renal death, or a sustained decline of ≥40% in eGFR from randomization) or (ii) Cardiovascular death

Is it appropriate to generalize the results to all patients with CKD?

- DAPA-CKD enrolled patients with proteinuria.
- Non-proteinuric CKD, notably polycystic kidney disease was excluded.
- Inflammatory glomerulonephritis were also excluded: Lupus and vasculitis. No reason to think SGLT2i have any role here, yet

How low is too low for eGFR?

- Published data from clinical trials report empaglifozin initiation down to GFR 30 (EMPAREG); canaglifozin down to GFR 30 (CREDENCE) and now dapaglifozin down to 25 (DAPA-CKD).
- Both in CREDENCE and in DAPACKD, the drugs were continued down to dialysis - and hence this practice definitely has support.

DAPA – CKD Summary

- 32.5% of patients with CKD did not have T2DM
- 14.5% of patients had a eGFR <30 mL/min/1.73 m2
- There was a 29% relative risk reduction for the composite of death from CV causes or hospitalization for heart failure
- In patients with IgA nephropathy, when added to ACEi/ARB therapy, dapagliflozin significantly and substantially reduced the risk of CKD progression
- Post-hoc analysis of dapagliflozin in patients with low magnesium levels resulted in potential improvement in hypomagnesmia

Summary of Trial Data on SGLT2 Inhibitors

- The Canagliflozin-and-Renal-Events-in-Diabetes-with-Established-Nephropathy-Clinical-Evaluation (CREDENCE) study, showed that canagliflozin substantially reduced the risk of doubling of SCr, end-stage kidney disease (ESKD), or death from renal or cardiovascular causes in 4401 patients with diabetic CKD compared with placebo
- The Study-to-Evaluate-the-Effect-of-Dapagliflozin-on-Renal-Outcomesand-Cardiovascular-Mortality-in-Patients-With-Chronic-Kidney-Disease (DAPA-CKD), including 2510 patients with diabetic and 1803 with nondiabetic CKD, also showed an impressive reduction in the risk of ≥50% decline in eGFR, ESKD, or death from renal or cardiovascular causes.

2021 ACOI Annual Convention and Scientific Sessions October 27-30

Other SGLT2 Inhibitor Benefits

- SGLT2 inhibitors have shown reductions in HbA1c levels (ranges from -0.25 to -0.75% change from baseline)
- SGLT2 inhibitors are also known to reduce blood pressure and weight
- SGLT2 inhibitors have a role in treating IgA nephropathy (as seen by the use of Canagliflozin)
- Hypomagnesemia has also known to have improved with SGLT2i use
- Studies indicate that SGLT2 inhibitors in addition to routine care, can help with sodium retention in patients with SIADH

A Word on GLP-1 Agents and Indications

GLP-1 RA: Study name	N		% with CV disease*	% of statin use	Baseline HbA1c	Baseline BMI	Primary composite CV outcome HR (95% CI)	P value
Lixisenatide: ELIXA	6068	2.1	100%	93 %	7.70%	30.1	1.02 (0.89 to 1.17)	0.81
Liraglutide: LEADER	9340	3.8	81%	72%	8.70%	32.5	0.87 (0.78 to 0.97)	0.01
Semaglutide: SUSTAIN-6	3297	2.1	60%	73%	8.70%	32.8	0.74 (0.58 to 0.95)	0.02
Exenatide QW: EXSCEL	14752	3.2	73.10%	74%	8.00%	31.8	0.91 (0.83 to 1.00)	0.06
Dulaglutide: REWIND	9901	5.4	31.50%	66%	7.20%	32.3	0.88 (0.79 to 0.99)	0.026
Semaglutide Oral: PIONEER 6	3183	1.3	84.70%	85%	8.20%	32.3	0.79 (0.57 to 1.11)	0.17

ACOi

Clinical Use of SGLT2 Inhibitors

- Can be used as adjunct to diet/exercise, metformin and/or other oral medications or insulin for management of T2DM
 - Consider dose reduction of other anti-hyperglycemic agents with well controlled T2DM.
 - 50% oral agent dose or 10-20% pre-meal insulin dose should be considered once SGLT2i are added with well controlled T2DM
- The intravascular volume depletion may result in a reduced blood pressure or dizziness, consider dose reduction of other anti-hypertensives or diuretic agents

Clinical Use of SGLT2 Inhibitors

- A drop in eGFR is expected and should stabilize over 3-4 weeks, can consider re-assessing renal function at 4 weeks after initiating this agent
- SGLT2 inhibitors are safe and effective for as low as GFR 20 ml/min, though caution is advised for GFR 20-30 ml/min
- Continue SGLT2 inhibitor until the onset of dialysis
- Be mindful of UTI or genitomycotic infections, and rare risk of euglycemic diabetic ketoacidosis. Although amputations are not likely, can consider avoiding SGLT2 inhibitors in patients with active wounds or peripheral vascular disease

- SGLT2 inhibitors should be considered in all patients with T2DM and CKD
- SGLT2 inhibitors are approved for use in patient without diabetes with CKD and proteinuria
- SGLT2 inhibitors may be used in diuretic resistant cardio-renal syndrome
- SGLT2 inhibitors can be considered for refractory SIADH, hypomagnesemia, and possible kidney stones

Case Study # 1

- A 70 y/o female with T2DM (A1c 9%) with CKD3b and UACR 600 mg/g, h/o CAD with 2 stents, CVA, presents for management of uncontrolled T2DM. She is on Basaglar 20 units QHS and Admelog 8 units TID AC. SMBG ranges from 180-250 with avg BG 210 mg/mL. She is on Lisinopril 10 mg QD, Coreg 25 mg BID, and Atorvastatin 40 mg QHS. Her LDL was 68 at last lab evaluation. What should you suggest at this time?
 - Continue current regimen of basal-bolus insulin
 - Continue current regimen of basal insulin, start continuous glucose monitoring (CGM), and add-on SGLT2 inhibitor
 - Continue current regimen of basal insulin, start continuous glucose monitoring (CGM), and add-on GLP-1 agonist
 - Continue current regimen of basal insulin, start continuous glucose monitoring (CGM), and add-on DPP4 inhibitor

Case Study #2

- 65 y/o male with T2DM (A1c 8%) with CKD4 (eGFR 29), CAD s/p CABG 5 years ago, CHF (EF 40%), retinopathy, neuropathy, presents for management of T2DM. He is on tradjenta 5 mg QD, Lisinopril 40 mg QD, Lasix 40 mg QD, Metoprolol 25 mg BID, and Atorvastatin 40 mg QD. What is your next best recommendation?
 - Stop Tradjenta and start SGLT2 Inhibitor and reduce Lasix
 - Stop Tradjenta and start GLP-1 agonist and reduce Lasix
 - Continue Tradjenta, start SGLT2 inhibitor and reduce Lasix
 - Continue Tradjenta, start GIP-agonist, and reduce Lasix

References

- 1. Center for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2021
- 2. Radica Z. Alicic et al. CJASN 2017;12:2032-2045
- 3. Kidney International 2021
- 4. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001; 345: 851-860
- 5. Brenner BM, Cooper ME, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345: 861-869
- 6. Giorgino F, Vora J, Fenici P, Solini A. Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. *Cardiovasc Diabetol*. 2020
- 7. Williams DM, Nawaz A, Evans M. Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitors: Diabetes Ther. 2021
- 8. Perkovic, V., M. J. Jardine, et al. (2019). <u>NEJM</u>
- 9. Heerspink et al. Dapagliflozin in patients with chronic kidney disease. NEJM, 2020

Acknowledgements

Alyson Myers, MD Endocrinologist, Associate Professor Medical Director, North Shore University Hospital, Northwell Health Kenar Jhaveri, MD Nephrologist, Professor Northwell Health Jamie Hirsch, MD Nephrologist, Assiatht Professor

Yanyan Xie, MD

ACOi

Endocrinologist, Assistant Professor Northwell Health

> 2021 ACOI Annual Conventio and Scientific Sessions October 27-30

Northwell Heallth

THANK YOU

2021 ACOI Annual Convention and Scientific Sessions October 27-30

