

Shorter is BETTER: The Changing Paradigm of Antibiotic Duration

Liam Sullivan, DO Spectrum Health Medical Group Infectious Disease

Disclosures

- No financial disclosures
- I love dogs
- I am a we bit Irish

Outline

01

Review consequences of antibiotic overuse

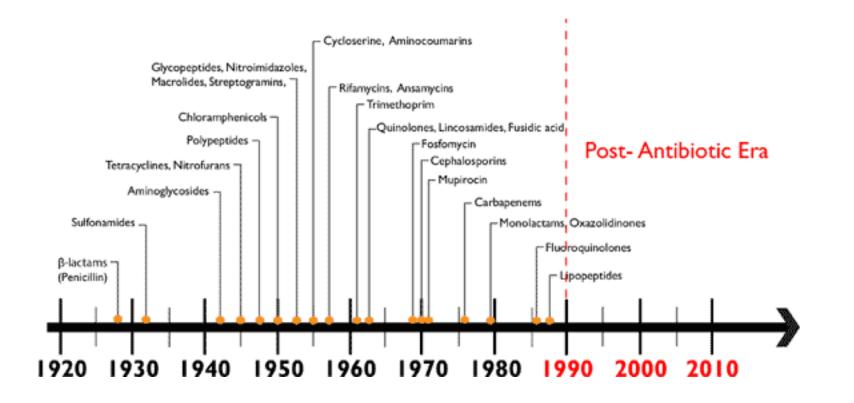
02

Discuss reasons for prolonged antibiotic durations 03

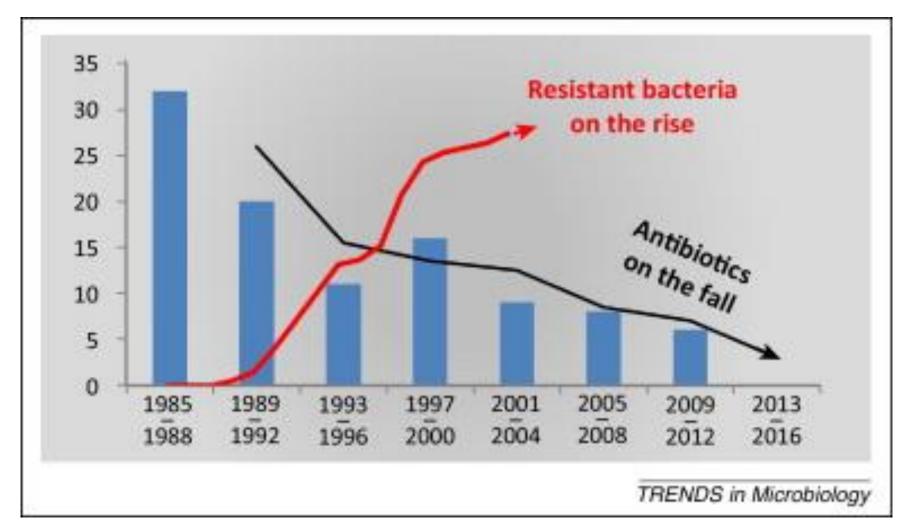
Discuss evidence supporting shorter courses of antibiotics

The Creation of Antibiotics and the Birth of Modern Medicine

MIRACLE CURE WILLIAM ROSEN

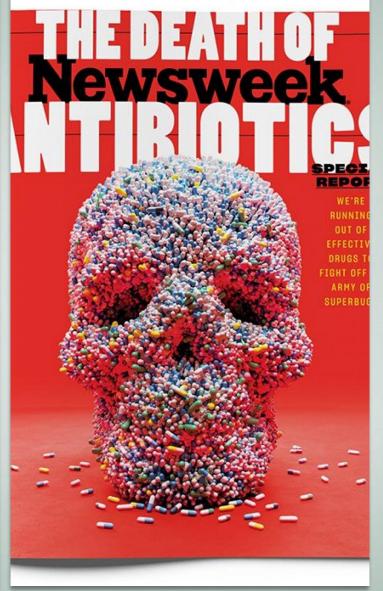

The Miracle

Golden Age of Antibiotics


ANTIBIOTIC DISCOVERY TIMELINE

Pawar, S, et al. Current Topics in Medicinal Chemistry (2017) 17: 251.

RISE OF THE RESISTANCE


Schäberle, Till & Hack, Ingrid. Trends in Microbiology 2014 (22), 165-7.

MICROBES

How Bacterial Resistance Is Undermining the Antibiotic Miracle

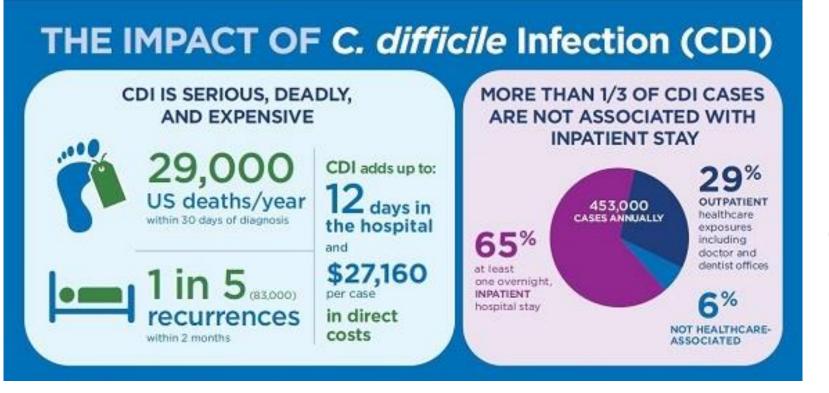
Abigall A. Salyers and Dixie D. Whitt

Revenge

Consequences of Antibiotic Overuse

Enterococcus faecium

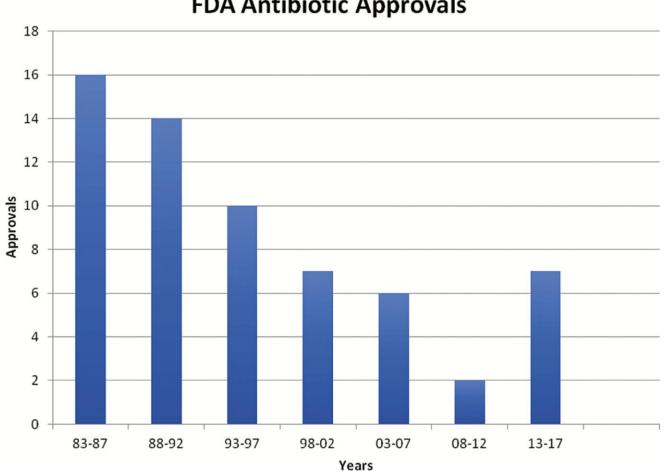
- Staphylococcus aureus
- Klebsiella pneumoniae
- Acinetobacter baumannii



Pseudomonas aeruginosa

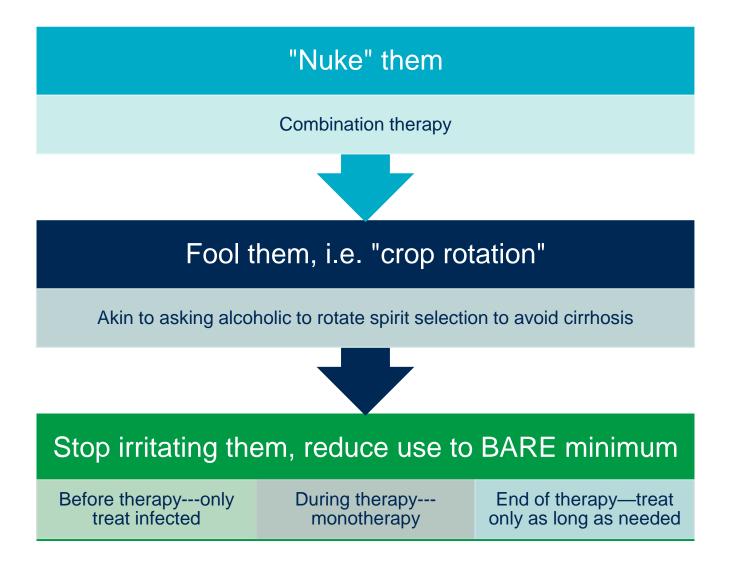
Enterobacter species

ESKAPE Pathogens



Clostridium difficile

Source: NFID.org


FDA Antibiotic Approvals

New Antibiotic Development

Clinical Infectious Diseases, July 2019

Reducing Antibiotic Resistance

"Just to Be Sure"

Extending courses beyond clinical improvement

"Can't hurt, might help!"

Often done to treat physician anxiety

Fallicy that longer = less resistance

Rice, CID 2008

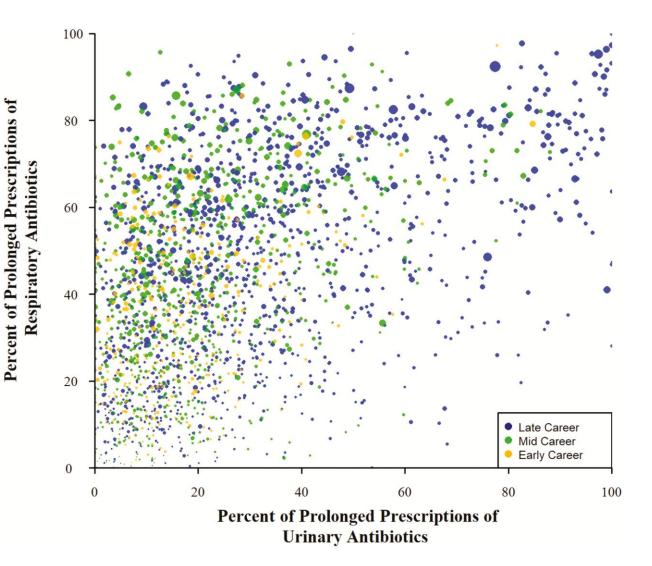
Traditional Duration of Therapy

Based on 7 day week

Longer exposure to antibiotics drives resistance

Why Does Duration Matter?

Longer exposure to antibiotics increases risk of adverse events



Longer exposure to antibiotics increases risk of C diff

Predictors of Prolonged Therapy

- 10K Family physicians
- Proportion prolonged antibiotic courses (>8 d)
- Predictors
 - Late career physicians
 - Rural location
 - Comorbid conditions
- Brad Spellberg:
 - "We <u>ALL</u> perform poorly, some worse than others."

EDITORIAL

The New Antibiotic Mantra-"Shorter Is Better"

Brad Spellberg, MD

Revised Thinking

Spellberg, JAMA Internal Med, 2016

Table. Infections for Which Short-Course Therapy Has Been Shown to Be Equivalent in Efficacy to Longer Therapy

	Treatme	ent, Days
Disease	Short	Long
Community-acquired pneumonia ¹⁻³	3-5	7-10
Nosocomial pneumonia ^{6,7}	≤8	10-15
Pyelonephritis ¹⁰	5-7	10-14
Intraabdominal infection ¹¹	4	10
Acute exacerbation of chronic bronchitis and COPD ¹²	≤5	≥7
Acute bacterial sinusitis ¹³	5	10
Cellulitis ¹⁴	5-6	10
Chronic osteomyelitis ¹⁵	42	84

Abbreviation: COPD, chronic obstructive pulmonary disease.

Evidence for Shorter is Better

Community Acquired Pneumonia

Hospitalized patients PSI IV-V

Treatment duration: 3-5 days vs 8-10 days

Clinical success equal NOT agent specific

2016 CAP Study

- Multicenter, non-inferiority
- 312 hospitalized patients
- Randomized at day 5
 - Control \rightarrow continued treatment
 - Intervention → stopped treatment
- Primary outcome
 - Clinical success at day 10 & 30

Characteristic	Control Group (n = 150)	Intervention Group (n = 162)
Age, mean (SD), y	66.2 (17.9)	64.7 (18.7)
Sex		
Male	95 (63.3)	101 (62.3)
Female	55 (36.7)	61 (37.7)
Tobacco		
Current smoker	32 (21.3)	36 (22.6)
Never smoker	68 (45.3)	71 (44.7)
Former smoker	50 (33.3)	52 (32.7)
Alcohol consumption (yes)	24 (16.1)	17 (10.5)
Comorbidities		
Liver disease	4 (2.7)	4 (2.5)
Heart disease	38 (25.3)	39 (24.1)
Congestive heart failure	14 (9.3)	12 (7.4)
Cerebrovascular disease	16 (10.7)	9 (5.6)
Renal disease	12 (8.0)	12 (7.4)
COPD	21 (14)	27 (16.7)
Diabetes	25 (16.7)	21 (13.0)
Charlson Comorbidity Index, median (IQR)	1 (0-2)	1 (0-2)
Charlson Comorbidity Index, categorized		
0	61 (40.7)	70 (43.2)
1	37 (24.7)	47 (29.0)
>1	52 (34.7)	45 (27.8)
Katz Index, mean (SD) ^b	0.6 (1.6)	0.4 (1.3)
PSI class		
1-111	89 (59.3)	102 (63.0)
IV-V	61 (40.7)	60 (37.0)
PSI score, mean (SD)	83.7 (33.7)	81.8 (33.8)

Primary Outcome

Table 2. Results for the Primary	/ Study	y Outcomes
----------------------------------	---------	------------

Outcome	Control Group	Intervention Group	P Value
Intent-to-Treat Analysis			
Total No. of participants	150	162	
Clinical success, No. (%) ^a			
At day 10	71 (48.6)	90 (56.3)	.18
At day 30	132 (88.6)	147 (91.9)	.33
CAP symptom questionnaire score, mean (SD) ^b			
At day 5	24.7 (11.4)	27.2 (12.5)	.10
At day 10	18.6 (9.0)	17.9 (7.6)	.69
Per-Protocol Analysis			
Total No. of participants	137	146	
Clinical success, No. (%) ^a			
At day 10	67 (50.4)	86 (59.7)	.12
At day 30	126 (92.7)	136 (94.4)	.54
CAP symptom questionnaire score, mean (SD) ^b			
At day 5	24.3 (11.4)	26.6 (12.1)	.16
At day 10	18.1 (8.5)	17.6 (7.4)	.81

Uranga, et. al., JAMA Internal Med, 2016

Table 4. Results for Secondary Study Outcomes in the Per-Protocol Analysis^a

Outcome	Control Group (n = 137)	Intervention Group (n = 146)	P Value
Time, median (IQR), d	(/		
Taking antibiotics	10 (10-11)	5 (5-6.5)	<.001
Not taking antibiotics	21 (10-27)	25 (5-32)	.001
Taking intravenous antibiotics	2 (1-4)	3 (2-4)	.22
Until clinical improvement	12 (8-18)	12 (7-15)	.41
Return to normal activity	18 (9-25)	15 (10-21)	.36
Radiographic resolution at day 30	93 (73.2)	112 (81.2)	.12
In-hospital mortality	2 (1.5)	3 (2.1)	>.99
30-d Mortality	3 (2.2)	3 (2.1)	>.99
Recurrence by day 30	6 (4.4)	4 (2.8)	.53
Readmission by day 30	9 (6.6)	2 (1.4)	.02
In-hospital complications			
Pleural effusion	10 (7.3)	5 (3.4)	.15
Treatment failure ^b	2 (1.5)	3 (2.1)	>.99
Respiratory failure ^c	26 (19.0)	31 (21.2)	.64
Severe sepsis ^d	7 (5.1)	8 (5.5)	.89
Renal failure ^e	5 (3.7)	6 (4.1)	.85
ICU admission	2 (1.5)	1 (0.7)	.61
Use of invasive mechanical ventilation	2 (1.5)	1 (0.7)	.61
Use of noninvasive mechanical ventilation	3 (2.2)	2 (1.4)	.67
Need for vasopressors	2 (1.5)	3 (2.1)	>.99
Antibiotic adverse effects by day 30	18 (13.1)	17 (11.7)	.72
Time with antibiotic adverse effects, mean (SD), d	3 (2.8)	1.7 (2.1)	.24
Length of hospital stay, mean (SD), d	5.5 (2.3)	5.7 (2.8)	.69

Secondary Outcomes

CAP: Does 3 days work?

Double blind RCT 3 vs 8 days

310 non-critically ill adults

Abx stopped at clinical stability

No differences in 3 vs 8 days

- Cure
- Adverse events
- Mortality

CAP: Excess Duration & Adverse Events

- Multicenter retrospective study in Michigan
- Primary outcome
 - Rate of excess antibiotic treatment duration
- Results
 - -2/3 pts received excess therapy (median: 8 days)
 - 93% excess therapy at discharge
- No differences in mortality or readmission
- Increase antibiotics associated AE in excess duration group

Outcomes at 30 Days	Appropriate Duration (<i>n</i> = 2090), <i>n</i> (%)†	Excess Duration (n = 4391), n (%)‡	Unadjusted OR per Excess Day (95% CI)§	Unadjusted P Value§	Adjusted OR per Excess Day (95% CI)§	Adjusted P Value§
Mortality	40 (1.9)	88 (2.0)	0.99 (0.94-1.03)	0.52	1.01 (0.97-1.05)	0.60
Readmission	294 (14.1)	497 (11.3)	0.99 (0.96-1.02)	0.48	1.00 (0.98-1.03)	0.92
Emergency department visit	238 (11.4)	480 (10.9)	0.97 (0.94-1.00)	0.021	0.98 (0.95-1.01)	0.166
Antibiotic-associated adverse event¶	72 (3.4)	210 (4.8)	1.04 (1.01–1.07)	0.012	1.03 (1.00-1.06)	0.038
Clostridioides difficile infection**	11 (0.5)	22 (0.5)	0.92 (0.81-1.05)	0.21	0.93 (0.81-1.07)	0.30
Provider-documented ⁺⁺ [‡]	43 (2.1)	87 (2.0)	1.00 (0.94-1.05)	0.86	0.99 (0.94-1.05)	0.85
Patient-reported ++ §§	26/1132 (2.3)	114/2460 (4.6)	1.05 (1.02-1.08)	<0.001	1.05 (1.02-1.08)	0.001
Composite adverse outcome	499 (23.9)	897 (20.4)	0.98 (0.96–1.00)	0.078	0.99 (0.97-1.01)	0.40

What About Ventilator Associated Pneumonia?

Traditional duration 14-21 days

2 RCTs: 8 vs 15 days

Similar clinical outcomes & mortality

Significant reduction MDR pathogen in shorter treatment group

No specific studies for HAP

Hanretty, A. and J. Gallagher, Pharmacotherapy, 2018 Chastre J, et al. JAMA, 2003 Capellier G, et al. PLoS One, 2012

STOP-IT: Short Course for Intra-Abdominal Infections

- Typically treated until resolution of SIRS
 - 7-14 days most common
- Evidence for optimal duration scant & poor
- 2015 NEJM study: STOP-IT trial
 - Prospective, randomized, open label
 - Source control procedure
 - Treatment duration: 4 days after source control vs 2 days after resolution of SIRS
 - Primary outcome: SSI, recurrent IAI or death at 30 days
 - 56/257 in experimental group
 - 58/260 in control group

Table 2. Primary and Major Secondary Outcomes.*					
Variable	Control Group (N = 260)	Experimental Group (N = 257)	P Value		
Primary outcome: surgical-site infection, recurrent intraabdominal infection, or death — no. (%)	58 (22.3)	56 (21.8)	0.92		
Surgical-site infection	23 (8.8)	17 (6.6)	0.43		
Recurrent intraabdominal infection	36 (13.8)	40 (15.6)	0.67		
Death	2 (0.8)	3 (1.2)	0.99		
Time to event — no. of days after index source-control procedure					
Diagnosis of surgical-site infection	15.1±0.6	8.8±0.4	<0.001		
Diagnosis of recurrent intraabdominal infection	15.1±0.5	10.8±0.4	<0.001		
Death	19.0±1.0	18.5±0.5	0.66		

Septic Arthritis

- 154 cases
 - 2/3 hand & wrist
 - 30% Staphylococcus aureus
 - Infected implants excluded
- Median length of IV therapy: 1-2 days
- Median surgeries: 1
- Cure rate equivalent in both arms
 - Median follow up 6 mths
- 2 weeks arm decreased LOS

CLINICAL SCIENCE

Two weeks versus four weeks of antibiotic therapy after surgical drainage for native joint bacterial arthritis: a prospective, randomised, noninferiority trial

Ergys Gjika,¹ Jean-Yves Beaulieu,¹ Konstantinos Vakalopoulos,¹ Morgan Gauthier,¹ Cindy Bouvet,¹ Amanda Gonzalez,¹ Vanessa Morello,¹ Christina Steiger,¹ Stefanie Hirsiger,¹ Benjamin Alan Lipsky,^{2,3} Ilker Uçkay^{© 2,4}

Gram Negative Bacteremia

- 604 patients, prospective, randomized, open label, noninferiority
- 7 d vs 14 d
- Primary outcome
 - 90 day mortality, clinical failure & readmission
 - 7 days: 45.8%
 - 14 days: 48.3%

Clinical Infectious Diseases

MAJOR ARTICLE

Seven Versus 14 Days of Antibiotic Therapy for Uncomplicated Gram-negative Bacteremia: A Noninferiority Randomized Controlled Trial

Dafna Yahav,^{1,2} Erica Franceschini,³ Fidi Koppel,⁴ Adi Turjeman,^{2,5} Tanya Babich,^{2,5} Roni Bitterman,⁴ Ami Neuberger,^{4,6} Nesrin Ghanem-Zoubi,⁴ Antonella Santoro,³ Noa Eliakim-Raz,^{1,2} Barak Pertzov,⁵ Tali Steinmetz,⁵ Anat Stern,⁴ Yaakov Dickstein,⁴ Elias Maroun,⁴ Hiba Zayyad,⁴ Jihad Bishara,^{1,2} Danny Alon,⁷ Yonatan Edel,^{2,8} Elad Goldberg,⁹ Claudia Venturelli,³ Cristina Mussini,³ Leonard Leibovici,^{2,5} Mical Paul^{4,6}; for the Bacteremia Duration Study Group⁸

¹Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, and ²Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel; ³Clinic of Infectious Diseases, University of Modena and Reggio Emilia, Italy; ⁴Infectious Diseases Institute, Rambam Health Care Campus, Haifa, ⁵Department of Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, ⁶The Ruth and Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, and ⁷Department of Medicine B, ⁸Department of Medicine C, and ⁹Department of Medicine F, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, ¹Rabin Medical Center, Beilinson Hospital, Petah-Tikva, ¹Chaita Center, ¹Chaita C

What about Pseudomonas, shouldn't that be longer?

- Fabre, et. al. CID 2019
 - 249 pt Pseudomonas bacteremia
 - Short course (7-11 days) vs long course
 - Propensity matched retrospective cohort
 - Excluded: osteoarticular, endovascular & CNS infections
 - Included: immunocompromised
 - Outcome:
 - Recurrent Pseudomonas bacteremia or death at 30 days
 - Results
 - No outcomes difference short vs long course
 - ~1/3 transition to oral FQ day 5-6
 - Short course: 4 fewer days average LOS

Clinical Infectious Diseases

BRIEF REPORT

Antibiotic Therapy for *Pseudomonas aeruginosa* Bloodstream Infections: How Long Is Long Enough?

Valeria Fabre,¹ Joe Amoah,² Sara E. Cosgrove,¹ and Pranita D. Tamma²

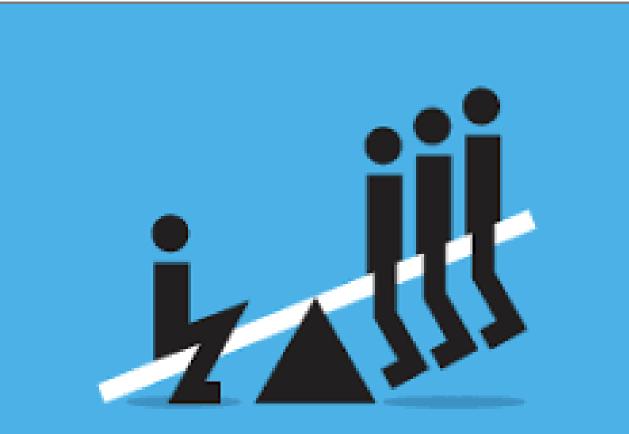
¹Division of Infectious Diseases, Department of Medicine, and ²Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland

Acute Bacterial Sinusitis

Study		OR (fixed)	Weight	OR (fixed)
or sub-category		95% CI	%	95% CI
Williams et al	-		2.22	1.07 [0.37, 3.09]
Pessey et al			3.12	0.73 [0.27, 1.95]
Gehanno et al			10.93	0.68 [0.39, 1.15]
Dubreuil et al			5.60	1.06 [0.54, 2.07]
Ferguson et al			6.56	1.04 [0.56, 1.93]
Roos et al			- 2.88	1.99 [0.88, 4.52]
Sher et al			3.47	1.01 [0.43, 2.38]
			8.95	0.75 [0.42, 1.34]
Henry et al			18.86	0.92 [0.63, 1.34]
Luterman et al			8.58	1.14 [0.67, 1.93]
Upchurch et al			13.38	1.01 [0.66, 1.57]
			15.44	0.91 [0.60, 1.38]
Total (95% Cl)		•	100.00	0.95 [0.81, 1.12]
Total events: 1845 (Short-co	ourse), 1862 (Lon	g-course)		
Test for heterogeneity: Chi ²	² = 6.49, df = 11 (F	P = 0.84), I ² = 0%		
Test for overall effect: Z = 0	.57 (P = 0.57)			
	0.1 0.2	0.5 1 2	5 10	
	Favors long-c	ourse Favors sh	ort-course	

M. E. Falagas et al. Br J Clin Pharmacol, 67:161–171

Uncomplicated Cellulitis


- 2004 study: 5 vs 10 days
- Randomized, double blind, prospective
- Primary outcome: resolution at 14 days, no relapse at 28 days
- 87 patients
 - 43---10 days therapy
 - 44---5 days therapy
- Result: no difference at 14 & 28 days

Summary

- Excessively long durations of antibiotic therapy contribute of antibiotic overuse & its unintended consequences
- Traditional antibiotic durations most often are excessively long & have traditionally been based on arbitrary numbers (e.g. 7 day week)
- Over the last 20 yrs, numerous studies of many commonly encountered infections have time & again demonstrated shorter courses of antibiotics are equivalent & often superior to longer courses of antibiotics
- Shorter is Better is an essential antimicrobial stewardship mantra that ALL clinicians should embrace & practive

Less is more

The Bottom Line

Questions?

There's NO CAKE people.