What's new in HF?

Munir S. Janmohamed M.D FACC, FHFSA 2021 Cardiovascular Conference Chair Medical Director Mechanical Circulatory/Heart Failure Program

Learning Objectives

- Classification of Heart Failure
- Review some key points from 2022 HF Guidelines
- What's in HFrEF? HFmrEF? HFpEF?
- Who is an Advanced Heart Failure Patient?

Heart Failure Statistics

- Increasing prevalence (6.5 million in US)
- Mean age of diagnosis: mid 70's
- High symptom burden (average KCCQ 55)
- Overall mortality remains high, 40% @ 5 years after diagnosis
- High Hospitalization rates (20% at 30 days;60% at 12 months)

Heart Success not Heart Failure

So why am I optimistic?

Reference

Published 4.1.2022
Journal of Cardiac Failure

Staging of Heart Failure

STAGE A: At-Risk for Heart Failure

Patients at risk for HF but without current or previous symptoms/signs of HF and without structural/functional heart disease or abnormal biomarkers

Patients with hypertension, CVD, diabetes, obesity, exposure to cardiotoxic agents, genetic variant for cardiomyopathy, or family history of cardiomyopathy STAGE B: Pre-Heart Failure

Patients without current or previous symptoms/signs of HF but evidence of 1 of the following:

Structural heart disease

Evidence of increased filling pressures

Risk factors and

- increased natriuretic peptide levels or
- persistently elevated cardiac troponin

STAGE C: Symptomatic Heart Failure

Patients with current or previous symptoms/signs of HF STAGE D: Advanced Heart Failure

Marked HF symptoms that interfere with daily life and with recurrent hospitalizations despite attempts to optimize GDMT

2022 ACC/AHA/HFSA HF Guidelines Journal of Cardiac Failure 4.1.2022

Classification of Heart Failure

New Classifications for Ejection Fraction in Heart Failure

EJECTION FRACTION CLASSIFICATIONS:

X

HEART FAILURE WITH PRESERVED EF (HFPEF) = LVEF > 50%

HEART FAILURE WITH IMPROVED EF (HFIMPEF) =

BASELINE LVEF ≤ 40%, A 10-POINT ↑ IN EF, AND A 2ND LVEF > 40%

The Journal of Cardiac Failure

Official Journal of the Heart Failure Society of America and the Japanese Heart Failure Society CARDIAC FAILURE

Bozkurt B, et al. J Card Fail 2021 @JCardFail #VisualAbstract

EF=EJECTION FRACTION

Classification of Heart Failure

Heart Failure with Reduced Ejection Fraction

Pathophysiology of Heart Failure

Pathophysiology of Heart Failure

Advancements in Medical Therapy for HFrEF

ARNI (sacubitril/valsartan): Heart Failure Mechanism

Angiotensin-converting enzyme (ACE)
Angiotensin receptor blockers (ARBs)
Mineralocorticoid receptor antagonists (MRAs)

Beta Blockers

PARADIGM-HF Study Design: ARNI (sacubitril/valsartan):

PARADIGM-HF: Study Design

*Enalapril 5 mg twice a day for 1-2 weeks followed by enalapril 10 mg twice a day as an optional starting run-in dose for those patients who are treated with ARBs or with low dose of ACE inhibitor

Primary outcome: CV death or HF hospitalization Powered for CV death

PARADIGM-HF: CV Death or Hospitalization

Prospective Study of Biomarkers, Symptom Improvement and Ventricular Remodeling During Entresto Therapy for Heart Failure (PROVE-HF; NCT02887183)

James L. Januzzi MD^{1,2}, Margaret F. Prescott PhD³, Javed Butler MD MPH MBA⁴, G. Michael Felker MD MHS⁵, Alan S. Maisel MD⁶, Kevin McCague MA³, Alexander Camacho PhD¹, Ileana L. Piña MD MPH⁷, Ricardo A. Rocha MD³, Amil M. Shah MD MPH⁸, Kristin M. Williamson PharmD³, and Scott D. Solomon MD⁸ on behalf of the PROVE-HF Investigators

¹Massachusetts General Hospital, ²Baim Institute for Clinical Research, Boston, MA, USA; ³Novartis Pharmaceuticals, East Hanover, NJ, USA; ⁴University of Mississippi Medical Center, Jackson, MS, USA; ⁵Duke University Medical Center and Duke Clinical Research Institute, Durham, NC, USA; 6University of California, San Diego School of Medicine, San Diego, CA, USA; ⁷Detroit Medical Center, Detroit, MI, USA; ⁸Brigham and Women's Hospital, Boston, MA, USA

Paris 2019

ESC Congress World Congress of Cardiology

NT-proBNP concentrations

Rapid and significant reduction of NT-proBNP was observed, with majority of reduction within the first 2 weeks

Time point	N	Median NT-proBNP (25th, 75th percentile), pg/mL
Baseline	760	816 (332, 1822)
Day 14	754	528 (226, 1378)
Day 30	740	546 (211, 1321)
Day 45	734	514 (192, 1297)
Month 2	721	535 (210, 1299)
Month 3	719	488 (211, 1315)
Month 6	699	473 (179, 1163)
Month 9	659	444 (170, 1153)
Month 12	638	455 (153, 1090)

Reverse cardiac remodeling

Baseline to 12 months: all P <.001

BL, baseline; LVEF, left ventricular ejection fraction; LVEDVi, left ventricular end-diastolic volume index; LVESVi, left ventricular end-systolic volume index

SGLT2- in Heart Failure

- 2008, FDA required that any approved therapy for type 2 diabetes demonstrate cardiovascular safety.
- Multiple SGLT2i were deemed not only safe, but also effective in reducing atherosclerotic and HF events.

DAPA HF Trial

DAPA-HF Design

4,744 patients 20 countries

DAPA-HF

Primary Endpoint: CV Death or hHF or an Urgent HF Visit

DAPA = dapagliflozin; HF = heart failure; hHF = hospitalisation for heart failure; HR = hazard ratio; NNT = number needed to treat.

EMPEROR-Reduced Trial

EMPEROR-Reduced Trial

Empagliflozin Prevented Both Serious Heart Failure and Serious Kidney Failure Events

Hazard ratio 0.75 (25% reduction in risk) (95% CI 0.65, 0.86), P < 0.0001

Composite Renal Endpoint

Hazard ratio 0.50 (50% reduction in risk) (95% Cl 0.32, 0.77), P = 0.0019

SGLT2- in HFrEF

Primary outcome and components of primary outcome Secondary outcomes **Total HHF and** Worsening CV death HHF or HF* or CV CV death events DAPAHE CV death death HHF 25% RRR 25% RRR **18% RRR 26% RRR 30% RRR** p<0.001 p<0.001 NR[†] p<0.001 NR[†] *Unplanned HHF or urgent visit resulting in intravenous therapy for HF; 'p-value not reported in publication McMurray J et al. N Engl J Med 2019;381:1995hospitalisation Slope of HHF or CV First and decline in

recurrent HFF

30% RRR p<0.001

CKDEPI

50% RRR p<0.001

Reference

Published 4.1.2022
Journal of Cardiac Failure

Figure 6

Continue GDMT with serial reassessment and optimize dosing, adherence and patient education, address goals of care

Diuretics as needed (1)

4 Pillars or GOATS of HFrEF

@DrMunir Lanmohamed

Additional Therapies

MR and HFrEF

Two Types of Mitral Regurgitation

Incompetent mitral valve closure

Systolic retrograde blood flow from the LV into the LA

Primary: Anatomic abnormality of the mitral valve

- · Leaflets
- Subvalvular apparatus
- Chordae and papillary muscles

Secondary: LV dilation; secondary to ischemic and nonischemic heart disease

- Leads to mitral annular dilation
- Incomplete coaptation of the mitral valve

MR and Heart Failure

Secondary MR Worsens Heart Failure Outcomes

1.Rossi A, et al. Heart 2011; 97:1675-1680; 2. Bursi F, et al. Eur J Heart Fail 2010; 12:382-388

MR and HF: Vicious Cycle of LV Dilation/Dysfunction

MR and AF

History of Mitral Clip

Ottavio Alfieri M.D.

Mehmet Oz M.D.

1996, Dr Alfieri proposed to Dr Oz MV only needed one suture to close a leak

Dr Oz developed the idea to use a catheter, submitted patent in 1987

What is Mitral-Clip

Transvascular Edge-to-Edge Mitral Valve Repair

The COAPT Trial Design

Cardiovascular Outcomes Assessment of the MitraClip Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation

A parallel-controlled, open-label, multicenter trial in ~610 patients with heart failure and moderate-to-severe (3+) or severe (4+) secondary MR who remained symptomatic despite maximally-tolerated GDMT

Randomize 1:1*

MitraClip + GDMT N=305 GDMT alone N=305

*Stratified by cardiomyopathy etiology (ischemic vs. non-ischemic) and site

Principal Investigators: Gregg Stone, Michael Mack, William Abraham, Joann Lindenfeld,

COAPT Trial Results

Figure 9

Acute Decompensated Heart Failure

Hospitalization for HF is a Sentinel Event

Patients admitted with Acute Decompensated HF

Recommendations for Assessment of Patients Hospitalized With Decompensated HF				
COR	LOE	Recommendations		
4	C-LD	 In patients hospitalized with HF, severity of con- gestion and adequacy of perfusion should be assessed to guide triage and initial therapy.^{1–5} 		
1	C-LD	 In patients hospitalized with HF, the common precipitating factors and the overall patient trajectory should be assessed to guide appro- priate therapy.^{5,6} 		
Goals for Optimization and Continuation of GDMT				
1	C-LD	3. For patients admitted with HF, treatment should address reversible factors, establish optimal volume status, and advance GDMT toward targets for outpatient therapy. ⁶		

No congestion Congestion (dry) (wet) Diuretic: Warm and dry: Warm and wet: Good furosemide PCWP normal, PCWP elevated, bumetanide perfusion CI normal CI normal (warm) (compensated) Aquaretic / Natriuretic: Cold and dry: Cold and wet: tolvaptan Poor PCWP low-normal, PCWP elevated, nesiritide CI decreased CI decreased perfusion (cold) Vasodilator: Inotrope: dobutamine nitroglycerine nitroprusside milrinone

Inpatient use of ARNI

PIONEER-HF #AHA18

Trial description: Patients hospitalized with acute decompensated heart failure (ADHF) were randomized in a 1:1 fashion to either sacubitril/valsartan or enalapril. Patients were followed for 8 weeks.

RESULTS

- Primary endpoint, time-averaged reduction in NT-proBNP: sacubitril/valsartan vs. enalapril: -46.7% vs. -25.3%, p < 0.001
- Worsening renal function: 13.6% vs. 14.7%, p > 0.05, symptomatic hypotension: 15.0% vs. 12.7%, p > 0.05
- Rehospitalization for HF: 8.0% vs. 13.8%, p < 0.05

CONCLUSIONS

- Sacubitril/valsartan reduced NT-proBNP more than enalapril among patients with ADHF; noted as early as 1 week after drug initiation
- Although not powered for clinical endpoints, a reduction in rehospitalization for HF was noted

Velazquez EJ, et al. N Engl J Med 2018;Nov 11:[Epub]

GDMT During Hospitalization

Oral GDMT should be continued, initiated, and optimized during admission, as doing so is associated with lower post-discharge death and readmission.

Abbeviations: ACS indicates angistensin converting enzyme inhibitor. ARNI, angistensia receptor exprilysia inhibitor, AX abioverbicular, BP, blood persone: QDMT, guideline directed aredical therapy, and VTE, visious th

COR	LOE	Recommendations
1	A	In patients with HFrEF and NYHA class II to III symptoms, the use of ARNi is recommended to reduce morbidity and mortality
1	A	In patients with HFrEF, with current or previous symptoms, use of 1 of the 3 beta blockers proven to reduce mortality is recommended to reduce mortality and hospitalizations
1	A	In patients with HFrEF and NYHA class II to IV symptoms, an MRA is recommended to reduce morbidity and mortality, if eGFR >30 mL/min/ 1.73 m2 and serum potassium is <5.0 mEg/L
1	A	In patients with symptomatic chronic HFFEF, SGLT2i are recommended to reduce hospitalization for HF and cardiovascular mortality, irrespective of the presence of type 2 diabetes

- ARNI + BB + MRA + SGLT2-
- III Post Discharge HF Hospitalization and Survival
- How to Implement?
 - Changing our goals in a patient with ADHF
 - Transition of Care Pharmacist

Haldwarich, F. A. et al. (2022), 2022 ANA/ACC/HPSA Guideline for Heart Failure. Dissolution

Advanced Heart Failure

Advanced Heart Failure Outcomes

One-year hospitalization: 60%(2/3 > than once)

HF is a Progressive Condition

Markers of Advanced Heart Failure

- 1	<u>I</u> notropes	Previous or ongoing
N	NYHA class/Natriuretic peptides	NYHA III/IV or high NT-pBNP
E	End-organ dysfunction	Worsening renal/liver function
E	Ejection fraction	EF <20%
D	<u>D</u> efibrillator shocks	Appropriate shocks
Н	<u>H</u> ospitalizations	≥1 HF hospitalizations in 12 months
E	Edema/Escalating diuretics	Persistent overload, diuretic resistance
L	<u>L</u> ow blood pressure	<90mmHg
Р	Prognostic medication	Inability to titrate (or decrease) GDMT

ACC.21

Staging of Heart Failure

STAGE A: At-Risk for Heart Failure

Patients at risk for HF but without current or previous symptoms/signs of HF and without structural/ functional heart disease or abnormal biomarkers

Patients with hypertension, CVD, diabetes, obesity, exposure to cardiotoxic agents, genetic variant for cardiomyopathy, or family history of cardiomyopathy STAGE B: Pre-Heart Failure

Patients without current or previous symptoms/signs of HF but evidence of 1 of the following:

Structural heart disease

Evidence of increased filling pressures

Risk factors and

- increased natriuretic peptide levels or
- persistently elevated cardiac troponin

STAGE C: Symptomatic Heart Failure

Patients with current or previous symptoms/signs of HF STAGE D: Advanced Heart Failure

Marked HF symptoms that interfere with daily life and with recurrent hospitalizations despite attempts to optimize GDMT

2022 ACC/AHA/HFSA HF Guidelines Journal of Cardiac Failure 4.1.2022

AHF Management

HFrEF: Heart Success, Not Failure

Heart Failure with Mild Reduced EF (41-49%)

Heart Failure with Mildly Reduced Ejection Fraction (41-49%)

Heart Failure with Preserved EF (>50%)

TOPCAT Study (Post Hoc Analysis)

Circulation 11.18.14

ORIGINAL ARTICLE (FREE PREVIEW

Empagliflozin in Heart Failure with a Preserved Ejection Fraction

Stefan D. Anker, M.D., Ph.D., Javed Butler, M.D., Gerasimos Filippatos, M.D., Ph.D., João P. Ferreira, M.D., et al., for the EMPEROR-Preserved Trial Investigators*

October 14, 2021

N Engl J Med 2021; 385:1451-1461

DOI: 10.1056/NEJMoa2107038

EMPEROR-PRESERVED

Empagliflozin in Heart Failure with a Preserved Ejection Fraction
Anker et al, Aug 27, 2021. NEJM.

QUESTION

In patients with heart failure and a preserved ejection fraction, does Empagliflozin improve outcomes?

INCLUDED

- 18 and older
- NYHA II-IV
- · LVEF > 40%
- ntProBNP>300; or>900 if AFib
- Evidence of LAE or LVH
- · Stable diuretic use
- BMI < 45 kg/m2

CONCLUSION

Empagliflozin reduced the combined risk of cardiovascular death or heart failure hospitalization in patients with heart failure with preserved ejection fraction, regardless of the presence or absence of diabetes.

2022 ACC/AHA/HFSA Guidelines for HFpEF

Figure 12. Recommendations for Patients With Preserved LVEF (≥50%)

Summary

- Updated 2022 ACC/AHA/HFSA Guidelines on HF
- Classification of Heart Failure (HFrEF, HFmrEF, HFpEF)
- QUAD Therapy for HFrEF (ARNI, BB, MRA, SGLT2-)
- Recognition of AHF
- Guidelines on management of HFmrEF (41-49%)
- Guidelines on management of HFpEF

Thank You
Munir S Janmohamed M.D. FACC, FHFSA

@DrMunirJanmohamed