

Current Data and Recommendations for Staging Kidney Disease and Estimating GFR

Dr. Tarra I. Faulk, DO, FASN

Current Data and Recommendations for Staging Kidney Disease and Estimating GFR

Dr. Tarra I. Faulk, DO, FASN

Assistant Professor of Medicine, USUHS, Bethesda, MD

Staff Nephrologist, BAMC, San Antonio, TX

Disclosures

- I have no financial interests or relationships to disclose
- The views expressed in this material are those of my own [Dr. Tarra Faulk] and do not reflect the official policy or position of the U.S. Government, the Department of Defense, or the Department of the Air Force.

Educational Objectives

Discuss criteria for the diagnosis and staging of Chronic Kidney Disease (CKD)

Examine real-world practices for CKD screening and monitoring

Review the current recommendations for the assessment of kidney function

Describe methods for prognostication in both early and advanced CKD

Icon Legend

Know

Think about it

Further reading recommended

Definition of Chronic Kidney Disease

 Abnormalities of kidney structure or function, present for >3 months, with implications for health and is classified based on <u>cause</u>, <u>GFR</u> category, and <u>albuminuria</u> category (CGA)

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

6

Abnormalities of Kidney Structure or Function Include:

Sustained decrease in GFR < 60 ml/min per $1.73 \, \mathrm{m}^{\,2}$ History of kidney Albuminuria transplantation CKD Electrolyte **Abnormalities** abnormalities in urine d/t tubular sediment disorder **Abnormalities Abnormalities** in histology in imaging

CKD Awareness

- Approximately 15% of the US adult population has CKD
- Most patients are asymptomatic until late stages of disease
- The vast majority of patients do not know they have CKD
 - Low CKD awareness
- Why?
 - o Lack of provider driven education vs lack of screening?

CKD Screening- Why, Who & How?

- Why?
 - Many effective treatments exist to slow CKD progression and/or reduce CV risk
- Proposal- universal screening for persons with HTN, diabetes, and cardiovascular disease
- CKD screening must include assessment of eGFR <u>AND</u> albuminuria
 - o Both strongly a/w increased risk of morbidity and mortality

CKD Screening- Real World Practices

- 523,165 adults with type 2 diabetes, over 1 year ¹
 51.6% tested for both urine ACR and eGFR (89.5% eGFR alone)
- 1,344,594 adults with diabetes ²
 35% tested for both urine ACR and eGFR
- 2,334,461 adults with HTN (no diabetes) 2 $_{\circ}\,4\%$

- ¹ Stempniewicz, et.al. Diabetes Care 44: 200-2009, 2021
- ² Shin, et.al. Hypertension 78: 1042-1052, 2021

CKD Screening- Why & How?

- Proposal- universal screening for persons with HTN, diabetes, and cardiovascular disease
- CKD screening must include assessment of eGFR and albuminuria
 - Both strongly a/w incr risk of morbidity and mortality
- Why?
 - Many effective treatments exist to slow CKD progression and/or reduce CV risk
 - Adherence to guideline-recommended therapy

- Lifestyle modification
- Blood pressure and glycemic control
- RAAS inhibition
- Statin therapy
- Sodium-glucose cotransporter-2 inhibitors
- Nephrotoxin avoidance
- Others targeted therapies

Cause

- Clinical Suspicion/Presumption
- Biomarkers
- Genetic Testing
- Imaging
- Renal Biopsy

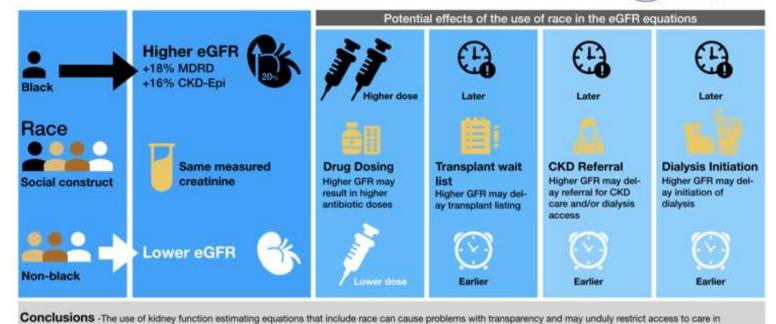
Estimated Glomerular Filtration Rate (eGFR)

• Summary of Recommendations (2012, 2021) 1,2

- Adoption of new CKD-EPI estimating equation based on creatinine and refit without the race variable
 - Result: increase the prevalence of CKD among Black individuals and decrease the prevalence among non-Black individuals

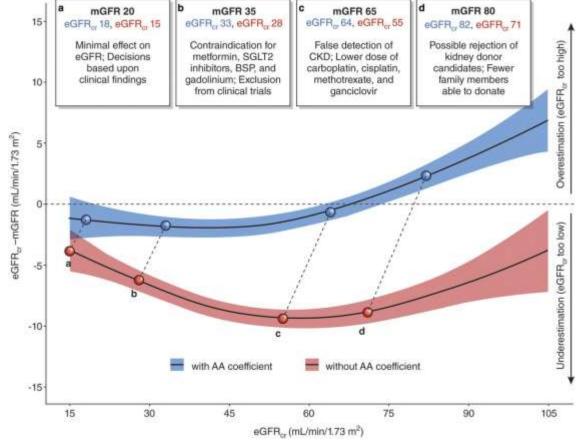
- Expand the use of cystatin C
 - Equations using both creatinine and cystatin C are more accurate than the singular use of either
- o Therefore, change from CKD-Epi 2009 to CKD-Epi 2021 equation
 - ¹ Delgado, et.al. J Am Soc Nephrol 32: 2994-3015, 2021
 - ² Inker, et.al. N Eng J Med 385: 1737-1749, 2021

Do Current eGFR Equations Disadvantage Black Patients?


Do the current eGFR equations disadvantage the black patients?

Eneanya ND, Yang W, Reese PP. Reconsidering the Consequences of Using Race to Estimate Kidney Function. JAMA 322 Number 2, July 9, 2019.

Visual Abstract by Krithika Mohan (@Krithicism), NSMC Intern 2019



Krithika Mohan (@krithicism)

some cases. The marginal improvement in accuracy may not justify use of this demographic variable.

Clinical Decisions Affected by Accuracy

of GFR

Levey. CJASN August 2020, 15 (8) 1203-1212

Albuminuria Estimation

- Why albuminuria?
 - \circ Along with eGFR has been strongly associated with incr. risk of morbidity and mortality 1,2,3

Goal- 24-hour albuminuria or first morning urine ACR (ACR, not PCR)

¹ Levey, et.al. Kidney Int 80: 17-28, 2011

² Koye, et.al. Am J Kidney Dis 72: 653-661, 2018

³ Halbesma, et.al. J Am Soc Nephrol 17: 2582-2590, 2006

Classification of CKD

Prognosis of CKD by GFR and albuminuria category

					nt albuminuria categories escription and range	
	S		A1	A2	А3	
Prognosis of CKD by GFR and Albuminuria Categories: KDIGO 2012				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
GFR categories (ml/min/ 1.73 m²) Description and range	G1	Normal or high	≥90			
	G2	Mildly decreased	60-89			
	G3a	Mildly to moderately decreased	45-59			
	G3b	Moderately to severely decreased	30-44			
	G4	Severely decreased	15-29			
	G5	Kidney failure	<15			

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

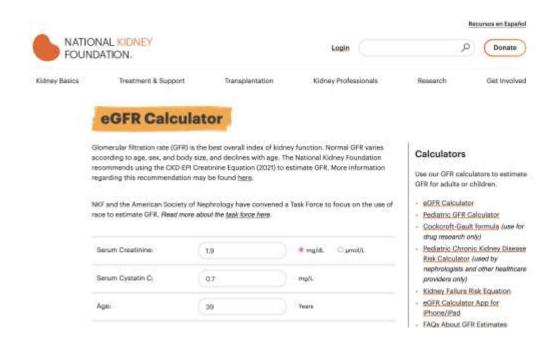
KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease

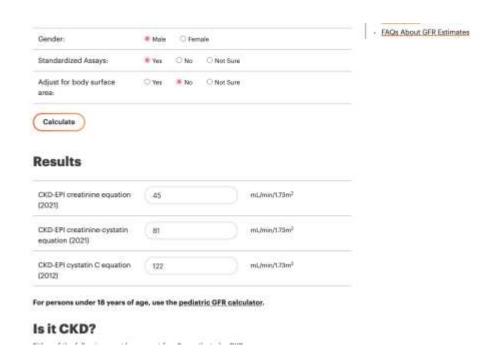
Clinically Speaking...

- 48/F with CKD G4A1 of unknown etiology but with h/o DM, HTN, and family history of multiple persons on dialysis
- 55/M with CKD G3A2 presumed 2/2 Diabetic Nephropathy
- 35/M with CKD G2A2 2/2 biopsied IgA Nephropathy

Prognostication

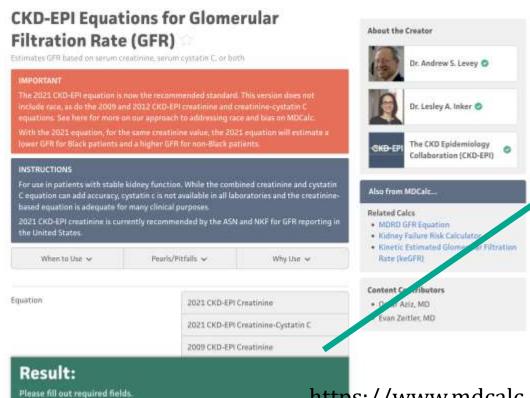
- Kidney biopsy findings
- Risk prediction equations

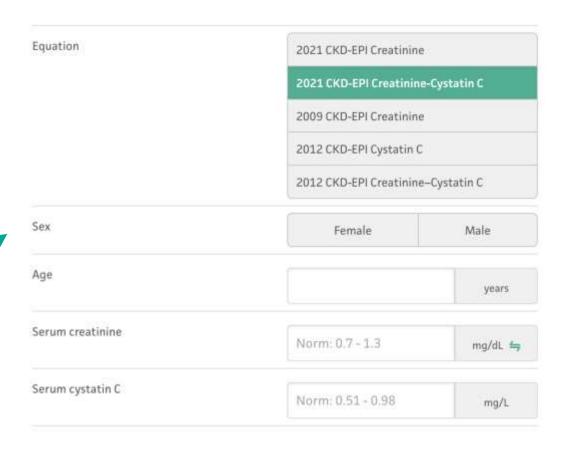

Table 1. Risk tools in CKD


Tool	Study Population	Variables	Outcome	Time Frame	Weblink
4-variable KFRE ³²	eGFR <60 ml/min per 1.73 m ²	Age, sex, eGFR, urine ACR	Kidney failure	2 and 5 years	kidneyfailurerisk.com
8-variable KFRE ³²	eGFR <60 ml/min per 1.73 m ²	Age, sex, eGFR, urine ACR, serum albumin, phosphate, bicarbonate corrected calcium	Kidney failure	2 and 5 years	kidneyfailurerisk.com
Advanced CKD ³³	eGFR <30 ml/min per 1.73 m ²	Age, sex, race, eGFR, urine ACR, systolic blood pressure, history of cardiovascular disease, diabetes, smoking history	Kidney failure, cardiovascular disease, death	2 and 4 years	ckdpcrisk.org/ lowgfrevents
Incident CKD ³⁴	eGFR >60 ml/min per 1.73 m ²	Age, sex, race, eGFR, urine ACR (optional if no diabetes), history of cardiovascular disease, body mass index, smoking history, hypertension, diabetes, diabetes medications and hemoglobin A1c (if diabetes)	Incident eGFR <60 ml/min per 1.73 m ²	5 years	ckdpcrisk.org/ ckdrisk
PCR to ACR ²⁵	Urine PCR >50 mg/g	Urine PCR or urine dipstick, (sex, hypertension, diabetes optional)	Urine ACR	NA	ckdpcrisk.org/ pcr2acr

Nephrology Self-Assessment Program- Vol 21, No2, June 2022

https://www.kidney.org/professionals/kdoqi/gfr_calculator


Is it CKD?					
Either of the following m	ust be present for a3 months	to be CKD:			
- GFR less than 60 ±3 m					
 ACR ≥30 mg/g or other 	r markers of kidney damage				
Click to learn more					
Equation used to estimat	e GFRY				
CKD-EPI Creatinine (2021 CKD-EPI Creatinine-Dyna CKD-EPI Cystatin C (2012)	in C (2021)				
What is the patient's ACR?* \$\frac{430 mg/s}{33.300 mg/s} \times 3.30 mg/mnol \$\frac{33.300 mg/s}{30.300 mg/s} \times 3.30 mg/mnol \$\frac{300 mg/s}{300 mg/s} \times 3.30 mg/mmol					
Based on the information	supplied:				
GFR category is:*	G3a				
ACR category is:**	A1				
CKD classification is:	G3a/A1				
Risk of progression is:	Moderate				



https://www.kidney.org/professionals/kdoqi/gfr_calculator

Referral to a nephrologist is:	Not needed	
		ria sione can fully capture prognosis of CKD. Penistent and nt risk factor for CKD progression.
The the absence of evidence	e of kidney damage, neither OFF	cotogory G1 nor G2 fulfill the criteria for CKD.
"ACR 30-300 mg/g for > 3	months indicates CKD	
Additional	Information	
 OKD-EPI Cystatin C MDRD Study Equat 	-Cystatin Equation (2021) Equation (2012) Ion	estimating GFR at www.ckdapl.org.
About CKD - Criteria for CKD? - Classification of CH - Why classify CKD? - Explore Case Studi		
CKD Risk Map		
Clinician Tools		
Kidney Failure Risk Ed	uation	

https://www.kidney.org/professionals/kdoqi/gfr_calculator

https://www.mdcalc.com/calc/3939/ckd-epi-equations-glomerular-filtration-rate-gfr

The good physician treats the disease; the great physician treats the patient who has the disease.

- William Osler

Review- Educational Objectives

Discuss criteria for the diagnosis and staging of Chronic Kidney Disease (CKD)

Examine real-world practices for CKD screening and monitoring

Review the current recommendations for the assessment of kidney function

Describe methods for prognostication in both early and advanced CKD

Questions?

Current Data and Recommendations for Staging Kidney Disease and Estimating GFR

Dr. Tarra I. Faulk, DO, FASN

Assistant Professor of Medicine, USUHS, Bethesda, MD

Staff Nephrologist, BAMC, San Antonio, TX

