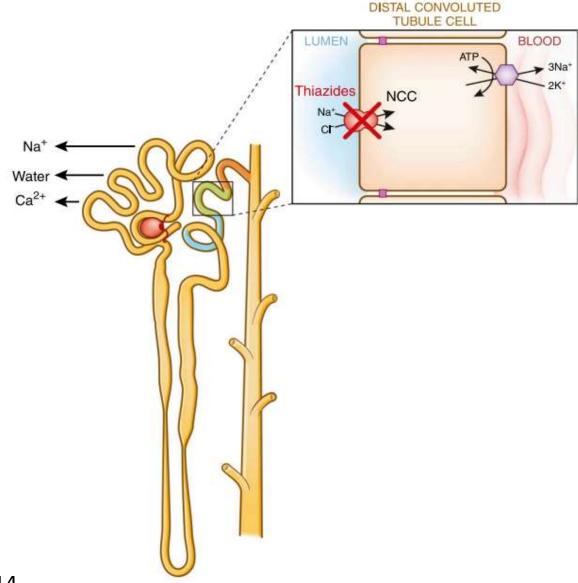
Thiazides and Kidney Disease

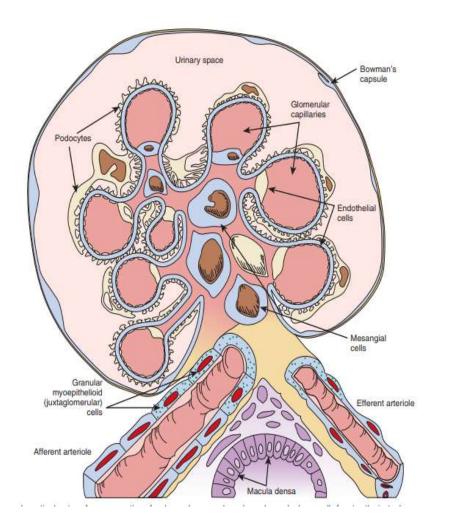
David S. Levy, D.O., FASN DavidS_Levy@URMC.Rochester.edu Assistant Professor of Clinical Medicine University of Rochester School of Medicine

Outline

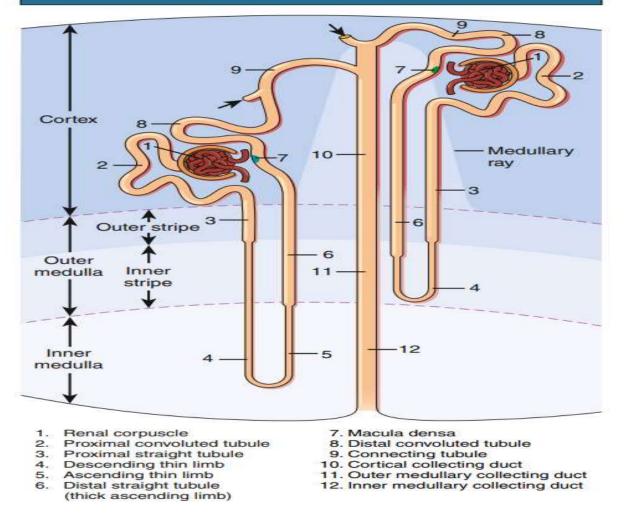

- Introduction
- Renal physiology
- Evidence
- Current guidelines and treatment recommendations
 - Blood pressure/volume
 - Nephrolithiasis/hypercalciuria

Introduction

- Thiazides induce natriuresis and subsequently increased water excretion by inhibiting the NCC channel in the distal convoluted tubule
- FDA approved indications for Thiazide diuretics include hypertension and edema
- Often prescribed (off-label) for prevention of kidney stones
- Sometimes used (off-label) to increase bone mass/mineralization in patients with hypercalciuria and bone loss

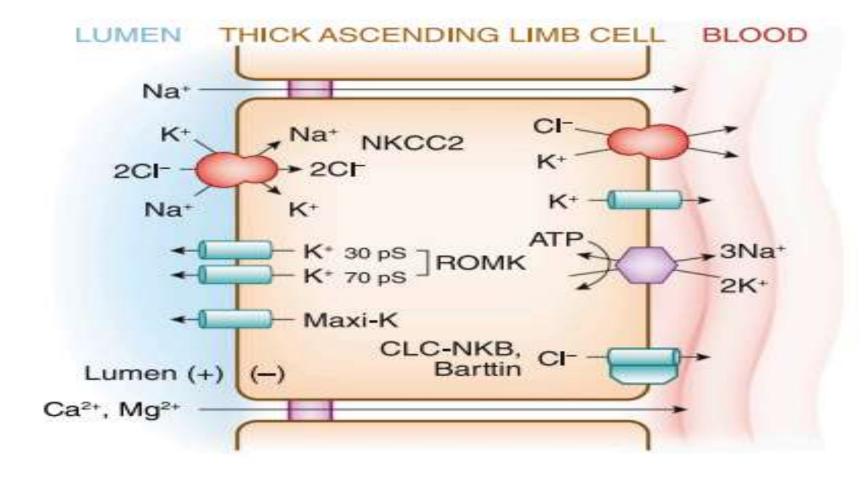

Renal Physiology

Renal physiology – mechanism of action



Clin J Am Soc Nephrol 9: 2147–2163, December, 2014

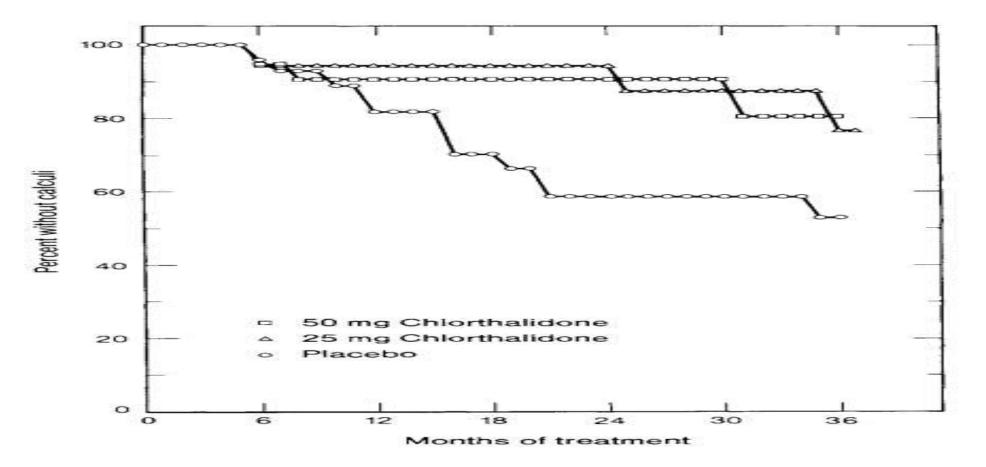
Renal physiology – hypocalciuria



Nephrons and the Collecting Duct System

Brenner and Rector's the Kidney, 11th Edition. © 2020 by Elsevier, Inc. Chapter 3, pages: 80-114 Comprehensive Clinical Nephrology, 7th Edition. © 2024 by Elsevier, Inc. Chapter 1, pages: 1-12

Renal physiology – Loop of Henle



Clin J Am Soc Nephrol 9: 1974–1986, November, 2014

Nephrolithiasis

Evidence of benefit – hypercalciuria

- Double-blind randomized trial using Chlorthalidone (42 patients) or Magnesium Hydroxide (51 patients) or Placebo (31 patients)
- All patients had some degree of hypercalciuria

J. Urol., 139: 679-684, 1988

Evidence of benefit – hypercalciuria

- Double-blind randomized study of 50 stone formers
- 25mg of Hydrochlorothiazide vs placebo

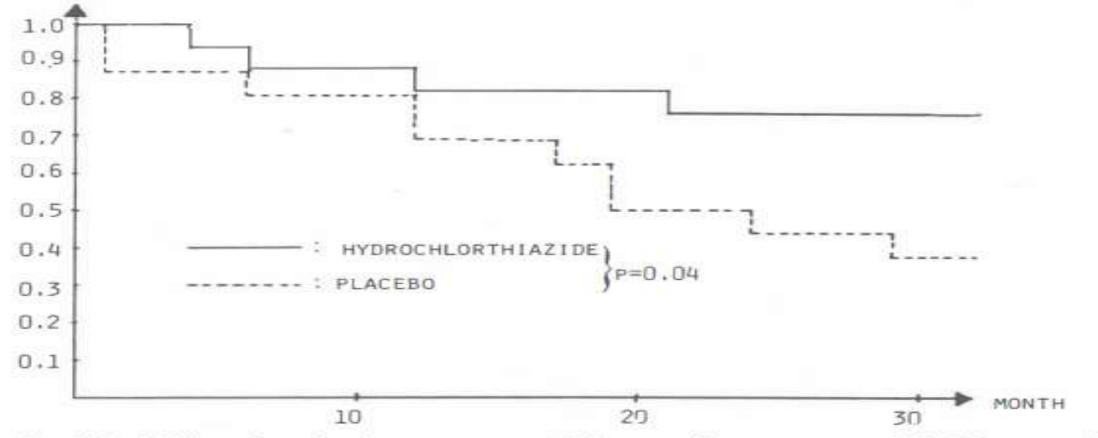
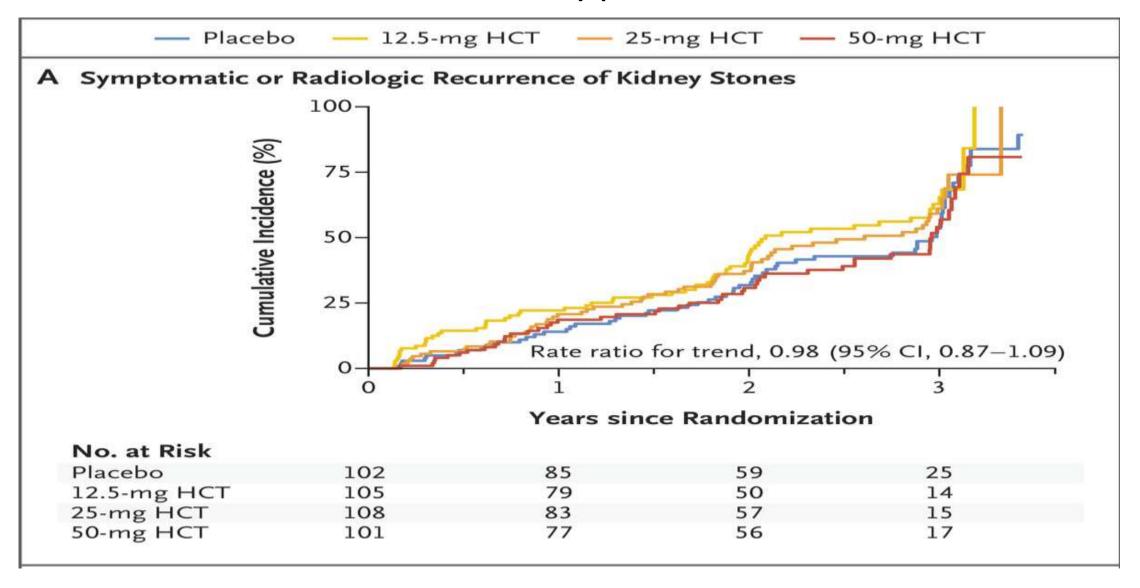


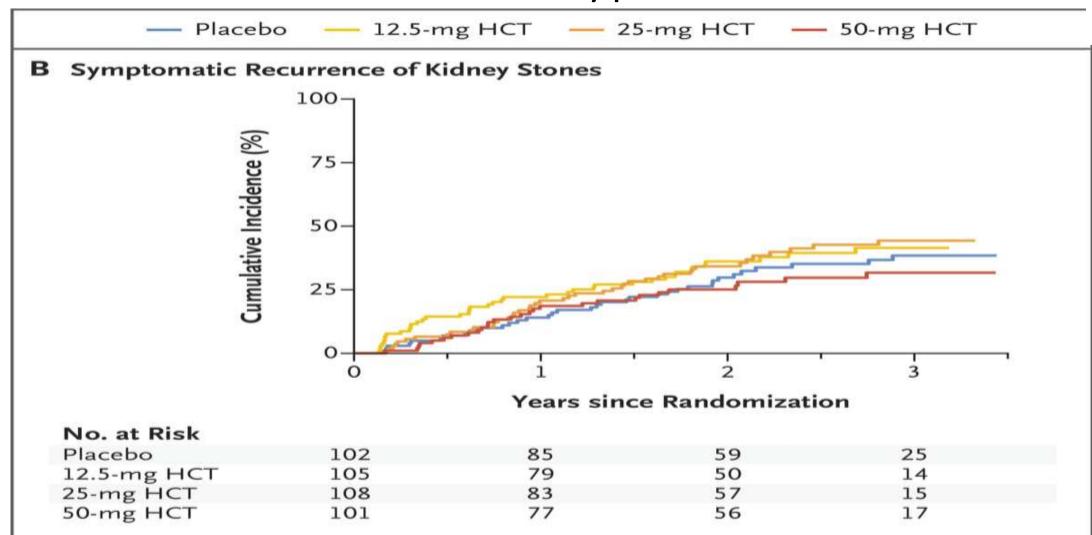
Fig. 1. Probability of not forming a new stone during a median treatment period of 3 years with thiazide or placebo (Kaplan and Meier plot).

Acta Med Scand 1984; 215: 383-389

Evidence of benefit – hypercalciuria

Author, Year	Treatment	Selection/Percent Hypercalciuria	Follow-Up (years)	<i>n</i> Treated/ <i>n</i> Placebo	RR
Brocks, 1981 (17)	Bendroflumethiazide 2.5 mg TID	None	1.6	33/29	NS
Scholz, 1982 (18)	HCTZ 25 mg BID	None	1	25/26	NS
Laerum, 1984 (12)	HCTZ 25 mg BID	None/20%	3	25/25	0.39
Wilson, 1984 (16)	HCTZ 100 mg daily	None	2.8	23/21	0.48
Robertson, 1985 (15)	Bendroflumethazide 2.5 mg TID	None	3 to 5	13/9	0.38
Mortensen, 1986 (13)	Bendroflumethazide 2.5 mg + KCl	None	2	12/10	NS
Ettinger, 1988 (10)	Chlorthalidone 25/ 50 mg	None/13% to 15.8%	3	19/23/31 25 mg/50 mg/ placebo	0.23
Ohkawa, 1992 (14)	Trichlormethiazide 4 mg	Hypercalciuria	2.1 to 2.2	82/93	0.42
Borghi, 1993 (9)	Indapamide 2.5 mg daily	Hypercalciuria	3	43/14	0.21
Fernandez-Rodriguez, 2006 (11)	HCTZ 50 mg daily	None/52%	3	50/50	0.56


Table 1. RCTs of thiazide diuretics in stone prevention


TID, 3 times a day; BID, twice a day; KCl, potassium chloride; RR, relative risk.

Hydrochlorothiazide and Prevention of Kidney-Stone Recurrence

- Randomized placebo controlled trial
- 416 patients with recurrent stone disease
- Placebo vs Hydrochlorothiazide (12.5mg, 25mg and 50mg dose)
- 3 year follow up period
- Primary end point: composite of symptomatic or radiologic stone recurrence

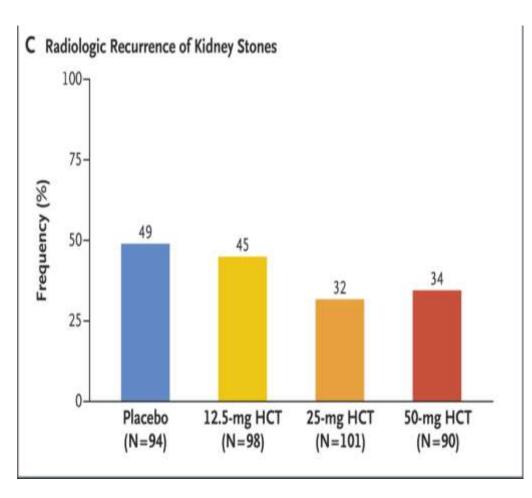


Table S12: Secondary End Point Analysis: Radiologic Stone Recurrence.

Group	Patients	Events	% (No. Events/ No. Patients)	Odds Ratio (95% CI)
Placebo	94	<mark>4</mark> 6	49%	Reference
12.5 mg HCT	98	<mark>44</mark>	45%	0.85 (0.48-1.50)
25 mg HCT	101	32	32%	0.49 (0.27-0.87)
50 mg HCT	90	31	34%	0.54 (0.29-0.98)

CI, confidence interval; HCT, hydrochlorothiazide.

ariable	Baseline		Follow-up		Effect vs. Placebo (95% Cl)	
	No. of Patients	Mean	No. of Assessments	Mean		
otal urine volume — liters/24 hr						
Placebo	101	1.74±0.80	252	2.06±0.74	Reference	
12.5-mg Hydrochlorothiazide	103	1.90±0.74	267	2.12±0.75	-0.01 (-0.16 to 0.13)	
25-mg Hydrochlorothiazide	104	1.93 ± 0.82	277	2.15 ± 0.80	0.07 (-0.09 to 0.22)	
50-mg Hydrochlorothiazide	100	1.68 ± 0.66	245	2.06±0.68	0.05 (-0.10 to 0.19)	
Irinary sodium excretion — mmol/24 hr						
Placebo	101	170.82±76.95	252	183.16±81.91	Reference	
12.5-mg Hydrochlorothiazide	103	179.65±85.04	267	181.89±79.69	<mark>-4.32 (</mark> -19.81 to 11.1	
25-mg Hydrochlorothiazide	104	197.06±85.65	277	191.80±83.87	<u>-0.37</u> (-16.87 to 16.1	
50-mg Hydrochlorothiazide	100	168.93±71.63	245	198.58±81.34	15.67 (-0.72 to 32.07	

Urinary calcium excretion — mg/24 hr					
Placebo	101	256.90±124.66	252	277.46±137.07	Reference
12.5-mg Hydrochlorothiazide	103	256.15±132.02	267	231.96±119.53	<u>-42.01</u> (-68.05 to -15.97
25-mg Hydrochlorothiazide	104	280.69±159.96	277	232.52±156.80	<mark>-40.54</mark> (-67.88 to -13.21
50-mg Hydrochlorothiazide	100	274.39±154.14	245	236.82±139.19	-51.13 (-78.87 to -23.39
Urinary citrate excretion — mg/24 hr					
Placebo	101	575.28±326.39	252	588.74±314.08	Reference
12.5-mg Hydrochlorothiazide	103	530.00±267.89	267	588.38±328.68	32.20 (-20.26 to 84.66)
25-mg Hydrochlorothiazide	104	522.16±246.10	276	520.57±292.50	-8.47 (-58.75 to 41.81)
50-mg Hydrochlorothiazide	100	554.09±288.86	245	536.51±309.71	-36.28 (-85.48 to 12.92)
Urinary oxalate excretion — mg/24 hr					
Placebo	101	30.02±18.41	252	34.98±20.60	Reference
12.5-mg Hydrochlorothiazide	103	29.92±17.33	267	37.24±19.63	2.62 (-1.47 to 6.71)
25-mg Hydrochlorothiazide	104	29.90±18.55	276	39.58±24.08	4.68 (0.25 to 9.11)
50-mg Hydrochlorothiazide	100	28.39±13.52	245	34.98±20.52	0.12 (-4.09 to 4.34)
50-mg Hydrochlorothiazide	100	28.39±13.52	245	34.98±20.52	0.12 (-4.09 to 4.34)

Urine relative supersaturation ratio, calcium oxalate†

Placebo	100	7.92±5.25	244	7.93±6.19	Reference
12.5-mg Hydrochlorothiazide	102	6.96±4.10	256	6.65±4.19	-0.7 (-1.67 to 0.26)
25-mg Hydrochlorothiazide	104	6.74±3.80	266	7.18±6.05	-0.28 (-1.42 to 0.86)
50-mg Hydrochlorothiazide	98	8.12±4.40	236	6.80±6.86	-1.23 (-2.49 to 0.02)
Urine relative supersaturation ratio, calcium phosphate†					
Placebo	100	2.70±2.76	244	2.52±2.55	Reference
12.5-mg Hydrochlorothiazide	102	2.42±2.58	256	1.83±2.19	<u>-0.54</u> (-1.04 to -0.04)
25-mg Hydrochlorothiazide	104	2.27±1.70	266	2.00±2.16	-0.38 (-0.85 to 0.10)
50-mg Hydrochlorothiazide	98	2.80±2.62	236	2.21±2.39	<mark>-0.38 (</mark> -0.85 to 0.10)

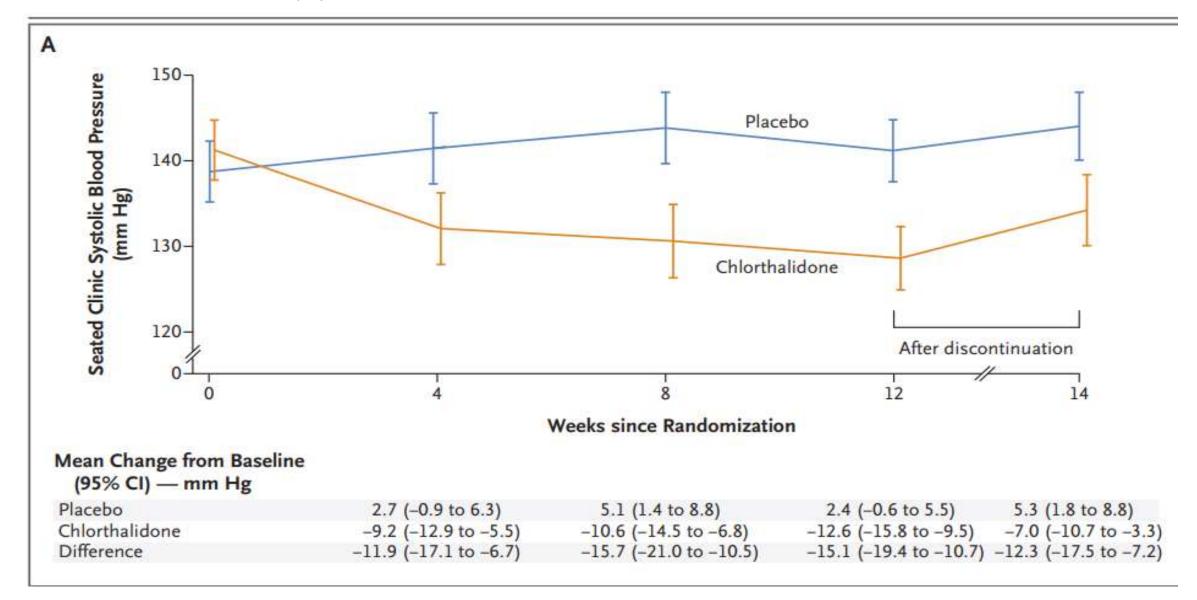
Summary of the NEJM study

- Hydrochlorothiazide is shorter acting then Chlorthalidone which could have reduced the effectiveness of the drug and hence effected the primary analysis (symptomatic stones or radiographic evidence of stone recurrence)
- The secondary endpoint (radiological stone recurrence) was lower for the thiazide groups compared to placebo
- Symptomatic stones could have been from stones that formed before participants were started on the thiazide
- Urine sodium was very high in the treatment group even after 3 years of treatment which likely reduced the efficacy of the thiazide
- Duration of study was only 3 years, could take longer to show significant benefit

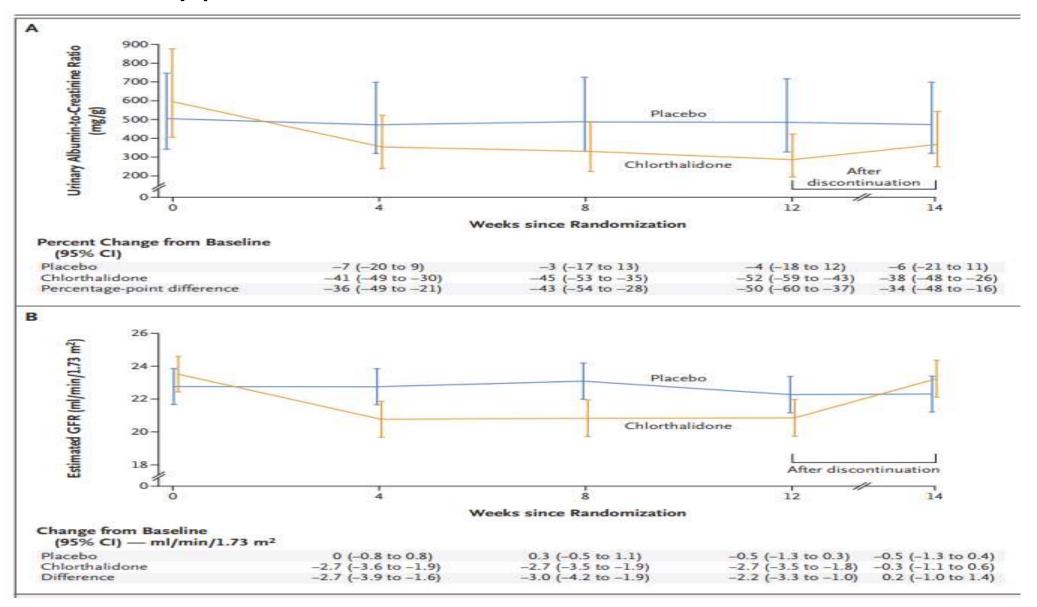
Hypertension and Kidney Disease

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


DECEMBER 30, 2021

VOL. 385 NO. 27


Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease

Rajiv Agarwal, M.D., Arjun D. Sinha, M.D., Andrew E. Cramer, B.S., Mary Balmes-Fenwick, M.S., Jazmyn H. Dickinson, B.S., Fangqian Ouyang, M.S., and Wanzhu Tu, Ph.D.

- Placebo controlled randomized trial
- 160 patients with CKD stage 4 and hypertension
- Chlorthalidone: started at 12.5mg increased every 4 weeks to maximum dose of 50mg daily
- Primary outcome: Change in blood pressure at 12 weeks

Agarwal et al N Engl J Med 2021;385:2507-19

Agarwal et al N Engl J Med 2021;385:2507-19

Table 2. Thiazide diuretic use in large-scale hypertension trials

Study	Year	n	Primary (P)/ Add-On (A)	Control	Agent/Dose (mg)	Diuretic Outcome	Comments
VA Cooperative Study (29)	1970	380	Р	Placebo	HCTZ 50 BID in combination with reserpine	Better	70% less deaths and major CV events
Hypertension Detection and Follow-Up Study (HDFP) (33)	1979	10,940	Р	Placebo	Chlorthal 25 to 100 daily	Better	17% to 20% less all-cause deaths
Australian Therapeutic Trial in Mild Hypertension (31)	1980	3427	Р	Placebo	Chlorothiazide 500 daily BID	Better	30% less all-cause deaths, 58% less CV deaths
The Oslo Study (30)	1980	785	Р	Placebo	HCTZ 50 daily	Better	Effect restricted to decreased strokes. All CV events decreased (54%) only in patients with baseline DBP ≥ 100 mmHg
European Working Party on High Blood Pressure in the Elderly (34)	1985	840	Р	Placebo	HCTZ/Triamterene 25/50 to 50/100 daily	Better	27% lower CV mortality, no difference in all-cause deaths
Heart Attack Primary Prevention in Hypertension Trial (HAPPHY) (40)	1987	7569	Р	Active (metoprolol)	HCTZ 50 daily or Bendro 5 daily	Same	No differences in any outcomes. Only trend was toward more fatal strokes in the diuretic group (OR = 3.37 [0.96 to 9.53])
Metoprolol Atherosclerosis Prevention in Hypertensives (MAPHY) (39)	1988	3234	Р	Active (metoprolol)	HCTZ 50 daily or Bendro 5 daily	Worse	48% less all-cause deaths and 58% less CV deaths in the metoprolol group
Multiple Risk Factor Intervention Trial (MRFIT) (36)	1990	8012	Р	Placebo	HCTZ 50 to 100 or chlorthal 50 to 100 daily	Better	Less CV deaths at some points during follow-up, especially if baseline DBP >100 mmHg. No effect during randomized trial phase. Chlor better than HCTZ
Swedish Trial of Old Patients with Hypertension (STOP) (37)	1991	1627	Р	Placebo	Co-amilozide 2.5/ 25 daily	Better	40% less CV events, 43% lower all-cause mortality

Table 2. (Continued)

Study	Year	n	Primary (P)/ Add-On (A)	Control	Agent/Dose (mg)	Diuretic Outcome	Comments
Systolic Hypertension in the Elderly Program (SHEP) (32)	1991	4736	Р	Placebo	Chlorthal 12.5 to 25 daily	Better	36% decrease in stroke (primary endpoint). 20% lower CV mortality and 32% less CV events
Medical Research Council Working Party (35)	1992	4396	Р	Placebo	Co-amilozide 25/ 2.5 to 50/5 daily	Better	Diuretics decreased CV events by 35% compared with placebo. β-blockers had no significant effect
Treatment of Mild Hypertension Study (TOMHS) (43)	1993	902	Р	Active (placebo, acebutolol, doxazosin, amlodipine, enalapril)	Chlorthal 15 to 30 daily	Same	Active treatment modestly better than placebo. No difference among the five drug classes
Shangai Trial of Nifedipine in the Elderly (STONE) (54)	1996	1632	А	Placebo	HCTZ 25 daily	NA	
Systolic Hypertension in Europe (Syst-Eur) (52)	1997	4695	A	Placebo	HCTZ 12.5 to 25 daily	NA	
Verapamil in Hypertension and Atherosclerosis Study (46)	1998	498	Р	Active (verapamil)	Chlorthal 25 daily	Same/ Worse	Trend toward more CV events in Chlor group, who also had greater progression of carotid atherosclerosis
Captopril Primary Prevention Project (CAPPP) (42)	1999	10,985	Р	Active (captopril)	HCTZ 25 daily or Bendro 2.5 daily	Same	
Swedish Trial of Old Patients with Hypertension 2 (STOP 2) (41)	1999	6614	Р	Active (enalapril or lisinopril, felodipine or isradipine)	Co-amilozide 2.5/ 25 daily	Same	
International Nifedipine GITS Study (INSIGHT) (44)	2000	6321	Р	Active (nifedipine GITS)	Co-amilozide 25/ 2.5 daily to 50/5 daily	Same	
Chinese Trial on Isolated Systolic Hypertension in the Elderly (Syst-China) (53)	2000	1253	А	Placebo	HCTZ 1.5 to 25 daily or BID	NA	

Table 2. (Continued)

Study	Year	п	Primary (P)/ Add-On (A)	Control	Agent/Dose (mg)	Diuretic Outcome	Comments
Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) (51)	2002	9193	A	NA	HCTZ 12.5 to 25 daily	NA	
Anti-Hypertensive and Lipid-Lowering to Prevent Heart Attack Trial (ALLHAT) (2)	2002	33,357	Р	Active (lisinopril, amlodipine)	Chlorthal 12.5 to 25 daily	Same	
Controlled Onset Verapamil Investigation of Cardiovascular Endpoints (CONVINCE) (58)	2003	16,602	Ρ, Α	Active (verapamil COER)	HCTZ 12.5 daily	Same	
Second Australian National Blood Pressure Study (ANBP2) (47)	2003	6083	Р	Active (enalapril)	HCTZ recommended, no dose specified	Worse	11% less CV events or deaths with enalapril
Valsartan Antihypertensive Long Term Use Evaluation (VALUE) (55)	2004	15,245	A	NA	HCTZ 12.5 to 25 daily	NA	
Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) (50)	2005	19,257	А	NA	Bendro 1.25 to 2.5 daily	NA	[No Title]
Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) (48)	2008	11,506	Р	Active	HCTZ 12.5 to 25 daily as fixed combination with benazepril	Worse	20% less CV events in the benazepril/amlodipine group
Hypertension in the Very Elderly Trial (HyVET) (38)	2008	3845	Р	Placebo	Indapamide 1.5 daily	Better	39% less stroke deaths, 21% lower total mortality, 64% less heart failure

Guidelines

Guidelines – Hypertension

"For CV disease prevention in those with high BP, unless there is a strong indication for 1 specific class, it seems reasonable to begin with 1 or more drugs among ACEi or ARB, CCB, and thiazide-like diuretic"

Kidney International (2021) 99, S1–S87

Guidelines – Nephrolithiasis

Medical Management of Kidney Stones: AUA Guideline

Margaret S. Pearle, David S. Goldfarb, Dean G. Assimos, Gary Curhan, Cynthia J. Denu-Ciocca, Brian R. Matlaga, Manoj Monga, Kristina L. Penniston, Glenn M. Preminger, Thomas M. T. Turk and James R. White

From the American Urological Assocation Education and Research, Inc., Linthicum, Maryland

"Pharmacologic Therapies 14. Clinicians should offer thiazide diuretics to patients with high or relatively high urine calcium and recurrent calcium stones. (Standard; Evidence Strength: Grade B)"

THE JOURNAL OF UROLOGY® Vol. 192, 316-324, August 2014

- Thiazides cause increased urine sodium and water loss
- The loss of sodium and water result in lower blood pressure and treatment of edema
- Thiazides likely induce a state of intravascular volume depletion which causes an increase in proximal tubule calcium uptake and hence reduce urine calcium excretion leading to a reduced risk for recurrent nephrolithiasis

Thank you for your attention