

Heart Failure EF: Exercise and its Cardiovascular Effects 2023

Chad Link, DO FACC, FACOI Chairman of Cardiology Sparrow Ionia and Eaton Hospitals- Sparrow TCI Clinical Assistant Professor Michigan State University College of Osteopathic Medicine

Disclosures

<u>Speakers Bureau</u> – Actelion Pharmaceuticals, J&J, BI, Astra Zeneca, Pfizer and BMS

Heart Failure Terminology

Heart failure is a global term for the physiological state in which cardiac output is insufficient for the body's needs. Heart Failure is a condition in which a problem with the structure or function of the heart impairs its ability to supply sufficient blood flow to meet the body's needs.

Heart Failure Pathophysiology

Heart failure is caused by any condition which reduces the efficiency of the myocardium leading to overload on the myocardium. Over time the increased workload will produce changes to the heart:

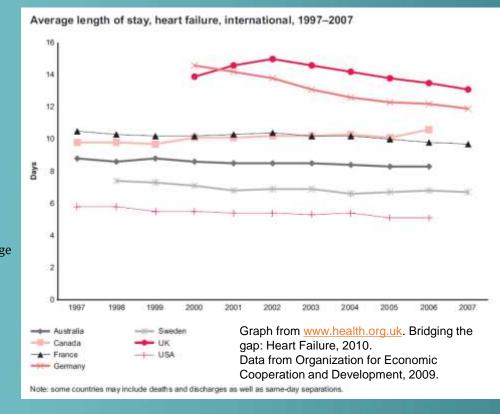
- Reduced contractility, or force of contraction, due to overloading of the ventricle.
- A reduced stroke volume, as a result of a failure of systole, diastole or both.
- Increased heart rate, stimulated by increased sympathetic activity in order to maintain cardiac output.
- Hypertrophy of the myocardium, caused by the terminally differentiated heart muscle fibers increasing in size in an attempt to improve contractility.
- Enlargement of the ventricles, contributing to the enlargement and spherical shape of the failing heart.

Heart Failure Statistics

Prevalence

- Heart failure (HF) affects an estimated 5.1 million Americans > 20 years of age.
- 400,000 new cases of heart failure are diagnosed in the United States annually.

Incidence


- One-percent of adults 50 to 60 years of age.
- Ten-percent of adults 80 years of age or older.

Heart Failure Is Associated with High Hospitalization and Readmission Rates

In 2010, there were 1 million
hospitalizations in the US with
HF as the principal diagnosis¹
Hospitalization rate did not change significantly from 2000¹
Average length of hospital stay
Approximately 5 days (US)²
11 days (Europe)³
HF is also associated with high readmission rates:

 \sim 25% all-cause readmission within 30 days and \sim 50% within 6 months⁵

- 1. CDC NCHS National Hospital Discharge Survey, 2000-2010
- 2. Yancy et al. JACC, 2006.
- 3. Cleland et al. EuroHeart, 2003.
- 4. Krumholz HM, et al. Circ Cardiovas Qual Outcomes 2009.
- 5. Wexler DJ, et al. Am Heart J 2001.

Types of Heart Failure

- Classification of heart failure is based on which heart function or which side of the heart is most affected by the condition.
- **Systolic heart failure (HFrEF)** failure of contraction to pump blood out of the chambers. This is measured by ejection fraction (EF) or the percentage of blood that is ejected out of the ventricle. Normal is 50% or higher.
- **Diastolic heart failure (HFpEF)** failure of relaxation to fill the chambers with blood
- Heart failure with mid-range EF (HFmEF) EF 40-49%

NYHA Functional Classification

Class	Description	
I (Mild)	No limitation of physical activity - ordinary physical activity doesn't cause tiredness, heart palpitations, or shortness of breath	
II (Mild)	Slight limitation of physical activity, comfortable at rest, but ordinary physical activity results in tiredness, heart palpitations, or shortness of breath	
III (Moderate)	Marked or noticeable limitations of physical activity, comfortable at rest, but less than ordinary physical activity causes tiredness, heart palpitations, or shortness of breath	
IV (Severe)	Severe limitation of physical activity, unable to carry out any physical activity without discomfort. Symptoms also present at rest. If any physical activity is undertaken, discomfort increases.	

AHA/ACC 2009 - Staging System of Heart Failure

Stage	Description	Examples	
А	People at high risk for developing heart failure but without structural heart disease or symptoms of heart failure. Encompasses "pre heart failure" where intervention with management can overt Progression to symptoms	CAD (coronary artery disease), diabetes, hypertension, metabolic syndrome, obesity, using cardiotoxins or alcohol, family history of cardiomyopathy, cerebrovascular accident (CVA), personal history of rheumatic fever	
В	People with structural heart disease but without signs and symptoms of heart failure NYHA Class I	Left ventricular hypertrophy (LVH) or reduced left ventricular ejection fraction (LVEF), asymptomatic valvular heart disease, previous MI	
С	People with structural heart disease with prior or current symptoms of heart failure NYHA Class II and III	Known structural heart disease with dyspnea, fatigue, inability to exercise	
D	People who have advanced heart failure and severe symptoms difficult to manage with standard treatment NYHA Class IV	Marked symptoms at rest despite maximal medical therapy, with recurrent hospitalizations	

ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure

Main Focus

- Pharmacological Therapy for HFrEF
 - o <u>Beta Blockers</u>
 - o <u>ACEi / ARB/ ARNI</u>
 - Hydralazine/ Isosorbide
 - o Aldosterone Antagonist
 - o SGLT-2 Inhibitor
 - Soluble Guanylate Cyclase Stimulator

Comorbidities and Treatment

- HTN
- Anemia/ Iron Deficiency
- Sleep Disturbances
- Exercise

ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure

Main Focus

- Pharmacological Therapy for HFrEF
 - o Beta Blockers
 - o <u>ACEi / ARB/ ARNI</u>
 - Hydralazine/ Isosorbide
 - o Aldosterone Antagonist
 - o SGLT-2 Inhibitor
 - Soluble Guanylate Cyclase Stimulator

Comorbidities and Treatment

- HTN
- Anemia/ Iron Deficiency
- Sleep Disturbances
- Exercise

Exercise As Medicine

- A vigorous 5-mile walk will do more than all the medicine in the world
 - Paul Dudley White

Contributors to Overall Health Status

- Genetics 20%
- Environment 20%
- Access to health care 10%
- Behavior 50%

ACOI 2023 October 11-14 Tampa • Hybrid

Activity vs. Fitness

- Activity
 - Movement carried out by skeletal muscles that requires energy
- Fitness
 - Ability to carry out tasks without undue fatigue
- Exercise
 - Planned, structured, repetitive and intentional movement intended to improve fitness
- Exercise capacity
 - $_{\odot}$ Cardiorespiratory fitness or VO2 max

ACOI 2023 October 11-14 Tampa • Hybrid

Exercise Capacity

- Measured in metabolic equivalents METS
- 1 MET is the resting metabolic rate
- Highly trained endurance athletes have exercise capacity of 25 METS
- Strong predictor of all cause mortality
 - Association is stronger than that for smoking, HTN, DM and hyperlipidemia

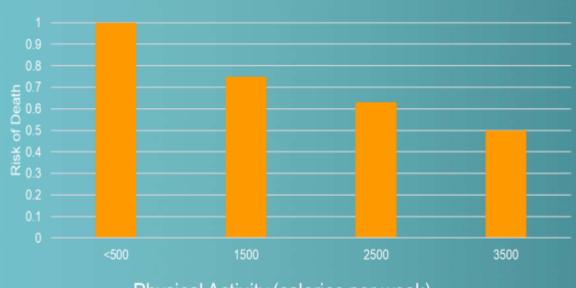
ACOI 2023 October 11-14 Tampa • Hybrid

Exercise Capacity

Leisure Time Activity	MET - Hours
Normal pace walking 2-2.9 mph	3
Brisk pace walking 3-3.9 mph	4
Very brisk pace walking 4 + mph	4.5
Jogging (slower than 10 min/mile)	7
Running (faster than 10 min/mile)	12
Bicycling	7
Tennis/Squash/Racquetball	7
Lap swimming	7
Stair climber	8
Yoga, stretching, toning	4
Lawn mowing	6

ACOI 2023 October 11-14 Tampa • Hybrid

Exercise Capacity


- Increase of 1 MET reduces mortality
 - o 17% in women
 - $_{\odot}$ 12% in men
- It takes a person with poor fitness 12 weeks to increase fitness by 1 MET

ACOI 2023 October 11-14 Tampa • Hybrid

How Healthy is Exercise? Harvard Alumni study – Cardiac Deaths

50% reduction

Physical Activity (calories per week)

Why We Don't Do It...

- Inadequate education
 - o 7 studies most common barriers
 - Lack of time
 - HCP perception of lack of efficacy
 - Lack of knowledge
 - Patient comorbidities
 - Only 32% of HCP professionals believe their advice will change behavior
 - No medical student curriculum
- Study of IM residents 90% thought it was the physician's responsibility
 - Only 15% actually provided counselling

ACOI 2023 October 11-14 Tampa • Hybrid

What About Exercise In Our Heart Failure Patients?

Background

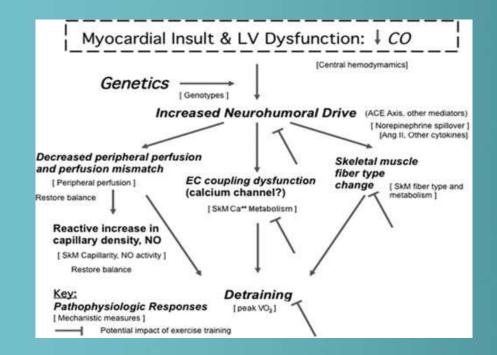
- Despite a variety of pharmacological and device therapies for persons with chronic heart failure (HF), prognosis and quality of life (QOL) remain poor.
- The need for new effective strategies to improve outcomes for patients with HF is underscored by persistently high mortality, morbidity, healthcare use, and costs associated with HF, with >1 million US HF hospitalizations. 1

 Exercise intolerance is a primary symptom in patients with chronic HF, both those with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF), and is a strong determinant of prognosis and of reduced QOL.²

ACOI 2023 October 11-14 Tampa • Hybrid

• Exercise training improves exercise intolerance and QOL in patients with chronic stable HFrEF, and has become an accepted adjunct therapy for these patients (Class B level of evidence) based on a fairly extensive evidence base of randomized trials, mostly small.³

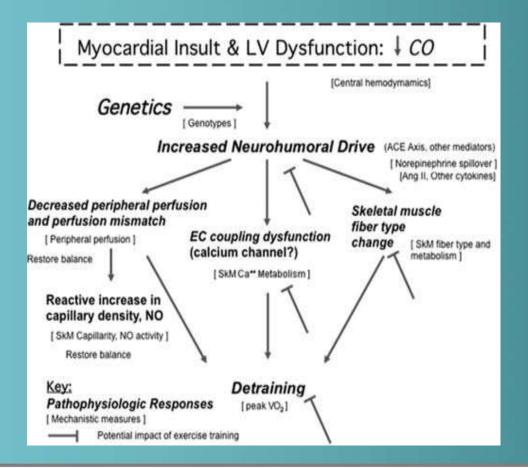
ACOI 2023 October 11-14 Tampa • Hybrid



So what happens in patients with HF?

 To help redirect available blood flow and maintain arterial pressure during exercise in patients with HF, muscles experience <u>enhanced sympathetic</u> <u>vasoconstriction, downregulation of endothelial</u> <u>vasodilatory function, and elevated venous</u> <u>pressures</u> that impair the muscle pumping action to facilitate blood flow

ACOI 2023 October 11-14 Tampa • Hybrid



• The figure represents a model of how left ventricular systolic dysfunction, induced by a myocardial insult with decreased CO, can lead to impaired exercise tolerance and how exercise training may reverse such changes.

ACOI 2023 October 11-14 Tampa • Hybrid

Colored Colore

Jerome L. Fleg. Circulation: Heart Failure. Exercise Training as Therapy for Heart Failure, Volume: 8, Issue: 1, Pages: 209-220, DOI: (10.1161/CIPCHEARTEAN UPE 113.001420)

(10.1161/CIRCHEARTFAILURE.113.001420)

What can exercise accomplish in HF patient?

• A therapeutic program that improves skeletal muscle O₂ delivery, while simultaneously improving mitochondrial and contractile efficiency might substantially improve metabolic function and exercise tolerance in patients with HF.

ACOI 2023 October 11-14 Tampa • Hybrid

Unfortunately, as we age, so does our exercise capacity. So what effect does aging, frailty, and comorbidities have on our exercise ability?

 Progressive decline in exercise capacity and decreased physiological reserve in cardiovascular function as well as in most other organ systems, altered pharmacological responses, increased adverse effects of medical therapy often lead to prolonged and often incomplete recovery.

ACOI 2023 October 11-14 Tampa • Hybrid

Unfortunately, most studies focus on younger patients.

- The prevalence and incidence of HF increase sharply after middle age.¹
- Approximately 88% of HF deaths and >75% of HF hospitalizations occur in patient's aged ≥65 years.⁴⁰
- Despite these demographics, older persons are significantly under-represented in HF studies, especially those involving exercise training.^{41,42}

Unfortunately, most studies focus on younger patients.

 In an analysis of 59 general HF trials conducted from 1985 to 1999 in >45 000 patients, the average age of participants was 61.4 years, whereas it is >77 years in the community.⁴² In the <u>HF-ACTION trial</u>, the largest trial of exercise training in HF, the mean age of participants was 59.5 years.⁴

ACOI 2023 October 11-14 Tampa • Hybrid

Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure: HF-ACTION Randomized Controlled Trial

 <u>Christopher M. O'Connor</u>, MD, <u>David J. Whellan</u>, MD, MHS, <u>Kerry L. Lee</u>, PhD, <u>Steven J.</u> <u>Keteyian</u>, PhD, <u>Lawton S. Cooper</u>, MD, MPH, <u>Stephen J. Ellis</u>, PhD, <u>Eric S. Leifer</u>, PhD, <u>William E. Kraus</u>, MD, <u>Dalane W. Kitzman</u>, MD, <u>James A. Blumenthal</u>, PhD, <u>David S.</u> <u>Rendall</u>, PA-C, <u>Nancy Houston Miller</u>, RN, BSN, <u>Jerome L. Fleg</u>, MD, <u>Kevin A. Schulman</u>, MD, <u>Robert S. McKelvie</u>, MD, PhD, <u>Faiez Zannad</u>, MD, PhD, and <u>Ileana L. Piña</u>, MD, for the HF-ACTION Investigators

ACOI 2023 October 11-14 Tampa • Hybrid

• Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) trial compared an individualized, supervised, and homebased aerobic exercise program plus guideline-based pharmacological and device therapy with guidelinebased therapy alone in persons with HFrEF.

Context

• Guidelines recommend that exercise training be considered for medically stable outpatients with heart failure. Previous studies have not had adequate statistical power to measure the effects of exercise training on clinical outcomes.

Objective

• To test the efficacy and safety of exercise training among patients with heart failure.

ACOI 2023 October 11-14 Tampa • Hybrid

Design, Setting, and Patients

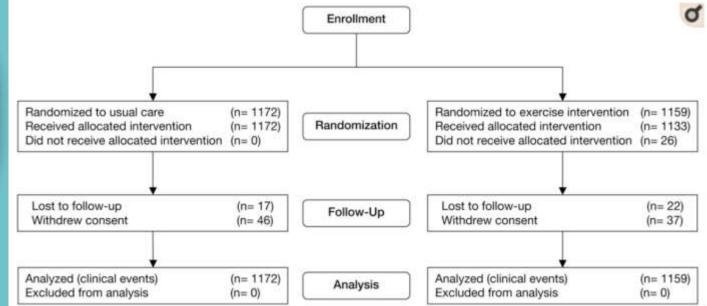
 Multicenter, randomized controlled trial among 2331 medically stable outpatients with heart failure and reduced ejection fraction. Participants in Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) were randomized from April 2003 through February 2007 at 82 centers within the United States, Canada, and France; median follow-up was 30 months.

ACOI 2023 October 11-14 Tampa • Hybrid

PÍ	

Characteristics No. (%) of Patients ^a		of Patients ^a
	Usual Care	Exercise Training
	(n = 1172)	(n = 1159)
Age, median (IQR), y	59.3 (51.1-68.2)	59.2 (51.2–67.8)
Female sex	314 (26.8)	347 (29.9)
Hispanic or Latino ethnicity	48 (4.1)	40 (3.5)
Race		
Black or African American	372 (31.7)	377 (32.5)
White	728 (62.1)	698 (60.2)
Other	56 (4.8)	65 (5.6)
NYHA class		
Ш	754 (64.3)	723 (62.4)
ш	409 (34.9)	422 (36.4)
IV	9 (0.8)	14 (1.2)
Ischemic etiology of heart failure	599 (51.1)	598 (51.6)
Left ventricular ejection fraction, median (IQR), %	24.9 (20.0–30.2)	24.6 (20.0–30.0)
Diabetes mellitus	370 (31.6)	378 (32.6)
Previous myocardial infarction	499 (42.6)	480 (41.4)
Hypertension	676 (57.7)	712 (61.4)
Atrial fibrillation or atrial flutter	241 (20.6)	247 (21.3)

ACOI 2023 October 11-14 Tampa • Hybrid



Exercise Training Protocol

- 3 sessions per week for a total of 36 sessions in 3 months.
- During the supervised training phase, patients performed walking, treadmill, or stationary cycling as their primary training mode.
- Exercise was initiated at 15 to 30 minutes per session at a heart rate corresponding to 60% of heart rate reserve (maximal heart rate on cardiopulmonary exercise test minus resting heart rate).
- After 6 sessions, the duration of the exercise was increased to 30 to 35 minutes, and intensity was increased to 70% of heart rate reserve.

ACOI 2023 October 11-14 Tampa • Hybrid

ACOI 2023 October 11-14 Tampa • Hybrid

Subjects With Selected Adverse Events

Adverse Event	Usual Care (N = 1171) ^a	Exercise Training (N = 1159)	
Prespecified Cardiovascular Adv	verse Events		
Worsening heart failure, No. (%)	340 (29.0)	303 (26.1)	
Myocardial infarction, No. (%)	45 (3.8)	41 (3.5)	
Unstable angina, No. (%)	88 (7.5)	86 (7.4)	
Serious adverse arrhythmia, No. (%) ^b	164 (14.0)	167 (14.4)	
Stroke, No. (%)	28 (2.4)	33 (2.8)	
Transient ischemic attack, No. (%)	23 (2.0)	20 (1.7)	
Any of the above events, No. (%)	471 (40.0)	434 (37.4)	
General Adverse Ever	nts		
Hospitalization for fracture of the hip or pelvis, No. (%)	7 (0.6)	3 (0.3)	
Outpatient fracture repair, No. (%)	20 (1.7)	13 (1.1)	
ICD firing, No. fired/No. with ICD (%)	151/644 (23.0)	142/641 (22.2)	
Hospitalization after exercise, No. $\left(\%\right)^{C}$	22 (1.9)	37 (3.2)	
Death after (or unknown if after) exercise, No. $(\%)^d$	5 (0.4)	5 (0.4)	

Clinical Events

	Usual Care	Exercise Training	Hazard Ratio	
Event	$(N = 1171)^{a}$	(N = 1159)	(95% CI)	P Value
All-cause mortality or all-cause hospitalization (primary end point), No. (%)	796 (68)	759 (65)	0.93 (0.84–1.02)	.13
Cardiovascular mortality or cardiovascular hospitalization, No. (%)	677 (58)	632 (55)	0.92 (0.83–1.03)	.14
Cardiovascular mortality or heart failure hospitalization, No. (%)	393 (34)	344 (30)	0.87 (0.75–1.00)	.06
Cardiovascular mortality or heart failure hospitalization or cardiac transplantation or left ventricular assist device, No. (%)	403 (34)	353 (30)	0.87 (0.75–1.00)	.06
All-cause mortality, all-cause hospitalization, emergency department visit, or urgent clinic visit for heart failure exacerbation, No. (%)	906 (77)	885 (76)	0.99 (0.90–1.08)	.79
All-cause mortality, No. (%)	198 (17)	189 (16)	0.96 (0.79–1.17)	.70
Cardiovascular mortality, No. (%)	143 (12)	131 (11)	0.92 (0.74–1.15)	.47

ACOI 2023 October 11-14 Tampa • Hybrid

Subgroup	No. of Patients	No. of Events	Hazard Ratio Hazard Ratio H 95% Confidence Interval	Hazard Ratio (95% Cl)	P Value for Interaction
All Subjects	2331	1555	- +	0.93 (0.84-1.02)	
Age					0.69
≤ 70 yrs	1896	1226		0.92 (0.82-1.03)	
> 70 yrs	435	329	← ● ₁	0.96 (0.78-1.20)	
Sex			1		0.17
Female	661	420		0.83 (0.68-1.00)	
Male	1670	1135		0.97 (0.87-1.09)	
Race			i.		0.72
Black	749	523		0.95 (0.80-1.12)	
White	1426	926	·•	0.94 (0.83-1.07)	
Other	121	84 -		0.86 (0.56-1.33)	
Etiology of HF			2		0.73
Ischemic	1197	834		0.94 (0.82-1.08)	
Non-ischemic	1134	721		0.91 (0.78-1.05)	
Baseline NYHA Class			1		0.27
	1477	907	→ →	0.95 (0.83-1.08)	
III / IV	854	648		0.85 (0.73-1.00)	

ACOI 2023 October 11-14 Tampa • Hybrid

https://www.ncbi.nlm.nih.gov/p mc/articles/PMC2916661/

- Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) trial compared an individualized, supervised, and home-based aerobic exercise program plus guideline-based pharmacological and device therapy with guideline-based therapy alone in persons with HFrEF.
- The exercise arm showed a modest reduction in cardiovascular hospitalizations and mortality and improved QOL. 4,5 .

ACOI 2023 October 11-14 Tampa • Hybrid

https://www.ahajournals.org /doi/10.1161/CIRCHEARTFAI LURE.113.001420

Unfortunately, this landmark study leaves several unanswered key questions:

- $\circ\,$ including the role of exercise dose;
- the relative benefit of different types of aerobic exercise, including high-intensity interval training (HIIT), and resistance, training relative to aerobic training;
- o combination of exercise training with other therapies;
- o optimization of adherence;
- benefit for older patients with HF, those with HFpEF or multiple comorbidities, and those with acute decompensated HF.

ACOI 2023 October 11-14 Tampa • Hybrid

https://www.ahajournals.or g/doi/10.1161/CIRCHEARTF AILURE.113.001420

What about exercise therapy in patients with heart failure with preserved left ventricular function (HFpEF)?

ACOI 2023 October 11-14 Tampa • Hybrid

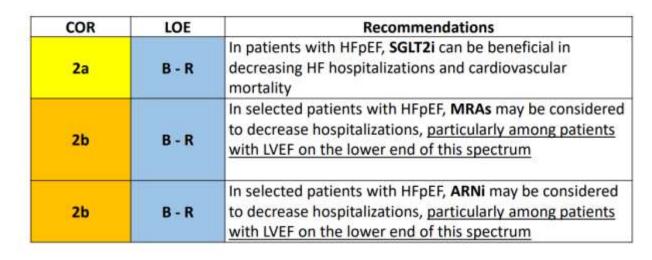
https://www.ahajournals.or g/doi/10.1161/CIRCHEARTF AILURE.113.001420

Circulation

AHA Journals	Journal Information	All Issues	Subjects	Features	Resources & Edu
Home > Girculation > Vol	I. 147, No. 16 > Supervised Exercise 1	fraining for Chronic Heart	Failure With Preserved I	Ejection Fraction: A Scie	wific Statement From the A
PREE ACCESS	Supervised Exercise Ejection Fraction:	A Scientific St	atement From	n the America	
B POFIEPUB	Association and A Vandana Sachdev, Kavita Sharma, Barry A, Franklin, Maya Guolin, Mi	Steven J. Keteylan, Char	ina F. Alcain, Patrice De	svigne-Nickens, Jerome	
🕨 Tools < Share	See all authors 💛 Originally published 21 Mar 2023 (Mar		50000000000000000000000000000000000000		
Jump to	Other version(s) of this article	U.			
Abstract	Abstract				
Background	Heart failure with preserved e	ection fraction (HFpER) is one of the most (common forms of hee	art failure; its prevalence is
Assessment and Quantitation of Exercise Intolerance in HFpEF	increasing, and outcomes are fatigue, as well as poor quality pharmacological intervention t interventions have consistent?	worsening. Affected p / of life, frequent hospi trials for HFpEF yielde	atients often experier talizations, and a hig d neutral primary out	ce severe exertional a mortality rate. Until comes. In contrast, tr	dyspnea and debilitating recently, most ials of exercise-based
Mechanisms of Exercise Intolerance in Chronic HFpEF and Benefits From Exercise Training	objectively altermined exercise the pleiotropic effects of exercise skeletal muscle, and cardiova statement miscally examines t	se capacity, and usual ise, which may favoral scular-that contribute	y quality of life. This s bly affect the full rang to exercise intoleran	e of abnormalities	uted, at least in part, to peripheral vascular, ingly, this scientific

Critical Analysis of stable HFpEF, potential mechanisms for improvement of exercise capacity and symptoms, and how these data compare

ACOI 2023 October 11-14 Tampa • Hybrid


A new version of the American College of Cardiology/American Heart Association guidelines for HF management was recently released

HFpEF treatment recommendations have been added for sodiumglucose cotransporter 2 inhibitors (Class of Recommendation 2a), mineralocorticoid receptor antagonists (Class of Recommendation 2b), and angiotensin receptor neprilysin inhibitors (Class of Recommendation 2b).²

Current guidelines also include a Class 1 recommendation (Level of Evidence A) for exercise training in patients with HF.² Although this recommendation does not distinguish between HFpEF and HFrEF

ACOI 2023 October 11-14 Tampa • Hybrid

New Recommendations for Heart Failure with preserved left ventricular function (HFpEF)

2022 ACC/ANV/RFSA Guideline for the Management of Heart Failure - DOI: 10.1016/j.cardfail.2022.02.010

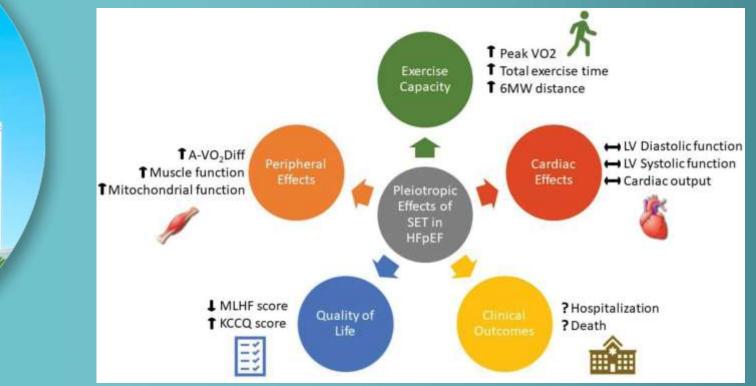
JCF Journal of Cardiac Failure

Heidenreich PA, et al. J Card Fall 2022

ACOI 2023 October 11-14 Tampa • Hybrid

HFSA

https://m2.healio.com/~/media/learningsites/learnthe heart/assets/4/f/9/0/atrialfibrillation.jpg



Several pathophysiological mechanisms are responsible for the severely reduced aerobic exercise capacity in patients with HFpEF.

These can be broadly categorized as **<u>cardiac</u>**, **<u>pulmonary</u>**, **<u>vascular</u>**, <u>and skeletal muscle</u>.

Other factors include <u>sedentary behavior; atrial fibrillation</u>, which is accompanied by a worse prognosis^{10,42}; and <u>obesity</u>, which may be associated with increased plasma volume, cardiac remodeling, and potentially pericardial restraint.⁴³

ACOI 2023 October 11-14 Tampa • Hybrid

ACOI 2023 October 11-14 Tampa • Hybrid

			Table 1. RCTs of Facility-Based SET in HFpEF				Kethetal	To company damang sa ET	Understop, 17		EF 540%	Grank daries va	3 Simes -	Bath denoing						
Study author, year	Aim of study	Study size exercise/control (bfinded:	Centers,	Patient population	Type of ET	SET program	Primary end points (unless otherwise	et al. ²¹ 2014	vi oznika oo functional capacity	ET/18 control (peri)	5 9	18. адн 1757 у 100% голан	Sike Youdhili - resistance an control	30 mm auch tar 1 mb	and BT enproved peek Voy as last time					
		yesing										noted)		To explore how			HENER, 2			
Közmen et al. ⁸⁷ 2010	To evaluate the effect of ET on peak Wg and GOL	26 ET 07 control (VAL)	e	EF x50%, NYHA,1L- IR, ege T0±5 y T7% mete	Waterg	3 times per unit for 4 mo	Improved peak Vog ex test time; terre; terre;	Fuerat [®] 2016	serobi, oterval biarvag affecta cantral and peopleme fuenodynamics	30 ET(2) continui jectus binded not rearboned for exercise heitingi	ġ.	CONNEL GEORE EF 350% AnniAlto- 16. ager 01±5 y EP% main	Bie O-ministerie	3 times per uk, 30 min sach, far 3 mo	ingenooid geneli Wig					
Edelmann et al. ^{ee} 2011	To evaluate the effect of ET an functional capacity cardiac function, and QOL	44 ET-29 control (pes)	3	(17 ±50%) NYH40 (1- 10, age 64±6 y, 45% male	Bite-rousbace	3 traves por viki 35 mon vacts for 6 mo	Improved peak Volg ax Sed time GMIWD	1002man et al. ⁷¹⁵ 2018	To determine whether colony reaction is SET ingeneers concluse capacity and QOI,	ati ETtali contral (pen)	а	27 s50%, MYHA11- 10, ege 07±0 y, 30% meso MWI s20 Ngm ²	342 factorial diet, waiting bath, control	0 lintes per uik, 00 min exch. 50 2 eau	Amproved point Vos ox test tana DBAND					
Smart ol al ¹⁹⁹ 2012	To everyone the effect of ET on functional costocy condec function, and GOL	14 EETIB control (actors bladed) out marktoned for exercise leating)	2	EF 2455, NYTSA I- III, age 10765 y 5355, male	Das	3 Imae per vik. 30 min each, fur 4 ma	impressed point Vo _T	Muster of al ¹⁹ 2021	To compare HIT MCT and paidwine feesed physical activity on pase Vity change	Se reiti Se MCTRE control (tre)	4	EF x80%, i-Frigh thing protocom must SNP Totac age T0 x 30% mas, most BW 30 Ages ²	HUT cycle (Ameri menods) is MCT vs aantad	1 trans por uk at, 1 mi SET Tollow-ap to 12 mp	Inspectant point Voy at 3 moint HET and MCT groups					

ACOI 2023 October 11-14 Tampa • Hybrid

Types of Exercise Used in Clinical Trials

Exercise studies in patients with chronic, stable HFpEF used various approaches for training, including walking, stationary cycle ergometry, high-intensity interval training (HIIT), strength training, and dancing.^{67–73,75–}

<u>Eleven studies</u>^{47,67–72,74–77} used facility-based SET and 4 studies home-based exercise training HIIT studies used 2- to 4-minute exercise bouts with the treadmill or cycle ergometer.^{74,76,77}

Although the training frequency was generally 3 sessions per week, the duration ranged from 1 to 8 months, and the intensity of training, when specified, varied considerably (40%–90% of exercise capacity), as did the individual session length (25–60 min).

ACOI 2023 October 11-14 Tampa • Hybrid

Table 2. Critical Gaps in Exercise-Based Therapy in HFpEF
Recommended focus areas for future trials
Setting: supervised, community based, home based, or hybrid
Modalities. HIIT, continuous aerobic training, strength training, or combination
Combination with other lifestyle interventions or medications: dietary weight loss, comprehensive CR, or ET alone
Strategies for long-term adherence: most trials are short-term and long-term maintenance is modest
Strategies to increase accessibility: particularly for underresourced populations
Minimize costs: can specific settings/modalities improve access and minimize costs
Role in management of recently hospitalized, older adults. fraility, impaired balance, and cognition may require innovative interventions
Effect on clinical events (hospitalization, death): larger studies and long-term follow-up are necessary

Preventing the development of HFpEF supervised or home-based training in patients with multiple risk factors

What Are The Current Recommendations?

ACOI 2023 October 11-14 Tampa • Hybrid

Exercise prescription

- It is mandatory that (sub) maximal exercise capacity is measured with a symptom-limited cardiopulmonary exercise test (CPET). A CPET will give information on the degree of cardiac impairment and will objectively measure VO2peak and other prognostic factors (VE/VCO2slope, oscillatory ventilation). Based on the results of CPET, one can:
 - Determine training intensity and perform training adjustments
 - Determine risk and prognosis
 - Re-test after exercise training program to objectify improvement in exercise capacity

ACOI 2023 October 11-14 Tampa • Hybrid

- A universal agreement on the best training modality in heart failure does not exist.
- Rather, an individualized approach is recommended, based on clinical evaluation and personal preferences.
- Training protocols vary in a number of ways: intensity (aerobic and anaerobic), type (endurance, resistance) and method (continuous and interval).
- Continuous endurance training is the best described form of exercise training and, because of its well-demonstrated efficacy and safety, is highly recommended in the guidelines. It is characterized by a moderate-to-high exercise intensity at steady-state condition of aerobic energetic yield, allowing the patient to perform prolonged training sessions (45-60 min duration). The exercise is usually performed on a bicycle or treadmill.

ACOI 2023 October 11-14 Tampa • Hybrid

 Resistance/strength training has been proposed to prevent the wasting syndrome and to incorporate upper body exercise, which is important to complete daily life tasks. It is important to prescribe dynamic resistive exercise training of small muscle groups and to avoid Valsalva maneuvers.

Setting

- It is recommended to initiate exercise training in a structured, supervised, center-based program. This can be either inhospital or in a specialized private facility, as long as close supervision and direct monitoring of heart rate and blood pressure are available, especially when HF symptoms are severe. Most center-based programs offer an eight to 12week training program.
- Thereafter, a gradual transition to a home-based program with or without telemonitoring tools - is encouraged, stimulating the patient to remain active for a longer time period and to adhere to the exercise training.

ACOI 2023 October 11-14 Tampa • Hybrid

Special Heart Failure Populations

- ICD and CRT-D patients should start exercise training under medical supervision and monitoring of heart rate. Exercise level and ICD programming should be adapted to <u>keep the</u> <u>maximal heart rate 20 beats below the ICD intervention zone.</u>
- The following patient information should be readily available to reduce the risk of incidents: 1) underlying heart disease and indication of ICD implantation; 2) triggers for arrhythmia (e.g., ischemia) and the arrhythmic substrate; 3) the ICD intervention heart rate; 4) the tachy-therapy that will be delivered.

ACOI 2023 October 11-14 Tampa • Hybrid

Conclusion

- Regular exercise training in patients with HFrEF and HFpEF was safe.
- Exercise training produced a nonsignificant reduction in the primary end point (all-cause mortality or all-cause hospitalization) and key secondary clinical end points.
- The treatment effect was statistically significant for the primary end point and for the secondary end point of cardiovascular mortality or heart failure hospitalization.

ACOI 2023 October 11-14 Tampa • Hybrid

Conclusion

- These findings are consistent with the 33 previous trials and the meta-analyses showing improved outcomes.
- Based on the safety of exercise training and the modest reduction in clinical events in addition to the modest increases in health-related quality of life (reported in the accompanying manuscript by Flynn et al²⁸), the HF-ACTION results support a prescribed exercise training program for patients with reduced left ventricular function and heart failure symptoms in addition to evidence-based therapy.

ACOI 2023 October 11-14 Tampa • Hybrid

In addition

- The 2016 European Society of Cardiology heart failure guidelines [8] firmly recommend that:
 - Regular aerobic exercise is encouraged in patients with HF to improve functional capacity and symptoms (Class I indication, level of evidence A); and
 - Regular aerobic exercise is encouraged in patients with HF to reduce the risk of HF hospitalization (Class I indication, level of evidence A).

ACOI 2023 October 11-14 Tampa • Hybrid

Thank You For Your Attention!

References

•1.Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013; 127:e6–e245. doi: 10.1161/CIR.0b013e31828124ad.LinkGoogle Scholar

•2.Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure.JAMA. 2002; 288:2144–2150.CrossrefMedIneGoogle.Scholar

•3_Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, Givertz MM, Klapholz M, Moser DK, Rogers JG, Starling RC, Stevenson WG, Tang WHW, Teerlink JR, Walsh MN. Executive Summary: HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail. 2010; *16*:475–539.CrossrefGoodel. Scholar

•4.O'Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Miller NH, Fleg JL, Schulman KA, McKelvie RS, Zannad F, Piña IL; HF-ACTION Investigators. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial.JAMA. 2009; 301:1439–1450. doi: 10.1001/jama.2009.454.CrossrefMedIneGoogle_Scholar

•5.Flynn KE, Piña IL, Whellan DJ, Lin L, Blumenthal JA, Ellis SJ, Fine LJ, Howlett JG, Keteyian SJ, Kitzman DW, Kraus WE, Miller NH, Schulman KA, Spertus JA, O'Connor CM, Weinfurt KP; HF-ACTION Investigators. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial.JAMA. 2009; 301:1451–1459. doi: 10.1001/jama.2009.457.CrossrefMedlineGoogle.Scholar

•6.Downing J, Balady GJ. The role of exercise training in heart failure.J Am Coll Cardiol. 2011; 58:561–569. doi: 10.1016/j.jacc.2011.04.020.CrossrelMadineGoode Scholar

•<u>7</u>Ades PA, Keteyian SJ, Balady GJ, Houston-Miller N, Kitzman DW, Mancini DM, Rich MW. Cardiac rehabilitation exercise and self-care for chronic heart failure.JACC Heart Fail. 2013; 1:540–547. doi: 10.1016/j.jchf.2013.09.002.<u>CrossrefMedlineGoogle_Scholar</u>

•3. Sullivan MJ, Knight JD, Higginbotham MB, Cobb FR. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation. 1989; 80:769–781. Crossrel Medine Google. Scholar

•9.Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism.J Am Coll Cardiol. 1991; 17:1065–1072.CrossrefMedIneGoogle_Scholar

•10.Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, Redfield MM. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction.J Am Coll Cardiol. 2010; 56:845–854. doi: 10.1016/j.jacc.2010.03.077.CrossrefMedlineGoogle Scholar

•11.Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, Pacini EL, Shibata S, Palmer MD, Newcomer BR, Levine BD. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011; *13*:1296–1304. doi: 10.1093/eurihf/hfr133.CrossrefMedlineGoogle Scholar

•12. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation. 1988; 78:506–515. <u>CrossrefMedlineGoogle Scholar</u>

•13. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation. 1992; *85*:2119–2131. Crossref Medine Coople. Scholar

•14.Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW. Effect of endurance training on the function in patients with heart failure with a preserved ejection fraction.Circ Heart Fail. 2010; 3:617–626. doi: 10.1161/CIRCHEARTFAILURE.109.867044.LinkGoogle.Scholar

ACOI 2023 October 11-14 Tampa • Hybrid

m

13

References

•20.Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010; 3:588–595. doi: 10.1161/CIRCHEARTFAILURE.109.930701.LinkGoogle.Scholar

•21. Shibata S, Hastings JL, Prasad A, Fu Q, Bhella PS, Pacini E, Krainski F, Palmer MD, Zhang R, Levine BD. Congestive heart failure with preserved ejection fraction is associated with severely impaired dynamic Starling mechanism. **J Appl Physiol (1985)**. 2011; *110*:964–971. doi: 10.1152/japplphysiol.00826.2010.CrossrefMedIneGoogle Scholar

•22. Hagberg JM, Graves JE, Limacher M, Woods DR, Leggett SH, Cononie C, Gruber JJ, Pollock ML. Cardiovascular responses of 70- to 79-yr-old men and women to exercise training. J Appl Physiol (1985). 1989; 66:2589–2594. Crossref/MedlineGoogle Scholar

•23.Kitzman DW, Brubaker PH, Morgan TM, Stewart KP, Little WC. Exercise training in older patients with heart failure and preserved ejection fraction.Circ Heart Fail. 2010; 3:659–667. doi: 10.1161/CIRCHEARTFAILURE.110.958785.LinkGoogle Scholar

•24, Fujimoto N, Prasad A, Hastings JL, Arbab-Zadeh A, Bhella PS, Shibata S, Palmer D, Levine BD. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. **Circulation**. 2010; *122*:1797–1805. doi: 10.1161/CIRCULATIONAHA.110.973784.LinkGoogle Scholar

•25.van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbély A, van der Velden J, Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation. 2008; 117:43–51. doi: 10.1161/CIRCULATIONAHA.107.728550.LinkGoogle.Scholar

•26.Steppan J, Tran H, Benjo AM, Pellakuru L, Barodka V, Ryoo S, Nyhan SM, Lussman C, Gupta G, White AR, Daher JP, Shoukas AA, Levine BD, Berkowitz DE. Alagebrium in combination with exercise ameliorates age-associated ventricular and vascular stiffness.**Exp Gerontol**. 2012; 47:565–572. doi: 10.1016/j.exger.2012.04.006.<u>CrossrefMedIneGoogle Scholar</u>

•27.Kraus WEExercise in Heart Failure: Roles of Testing and Training, in Heart Failure: A Companion to Braunwald's Heart Disease, , Mann D.L., Philadelphia, PA: Elsevier;2010:834–844.Google Scholar

•28. Higginbotham MB, Morris KG, Conn EH, Coleman RE, Cobb FR. Determinants of variable exercise performance among patients with severe left ventricular dysfunction. Am J Cardiol. 1983; 51:52–60. Crossref Medline Google Scholar

•29. Franciosa JA, Park M, Levine TB. Lack of correlation between exercise capacity and indexes of resting left ventricular performance in heart failure. Am J Cardiol. 1981; 47:33–39. Crossref Medline Google Scholar

•30. Duscha BD, Annex BH, Green HJ, Pippen AM, Kraus WE. Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol. 2002; 39:1170–1174. <u>CrossrefMedlineGoogle Scholar</u>

•31. Vescovo G, Serafini F, Facchin L, Tenderini P, Carraro U, Dalla Libera L, Catani C, Ambrosio GB. Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart. 1996; 76:337–343. CrossrefMedlineGoogle Scholar

•32. Wiener DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation. 1986; 73:1127–1136. CrossrefMedlineGoogle Scholar

•33. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. **Circulation**. 1988; 78:320–326. Crossrel Medine Grouple. Scholar

•34.Maskin CS, Forman R, Sonnenblick EH, Frishman WH, LeJemtel TH. Failure of dobutamine to increase exercise capacity despite hemodynamic improvement in severe chronic heart failure.Am J Cardiol. 1983; 51:177–182.<u>CrossrefMedlineGoogle_Scholar</u>

•43. Murad K, Kitzman DW. Frailty and multiple comorbidities in the elderly patient with heart failure: implications for

ACOI 2023 October 11-14 Tampa • Hybrid

m

13