CHIP:

New Frontier OR No Man's Land?

MUKTA SRIVASTAVA, MD FACC FSCAI ASSISTANT PROFESSOR OF MEDICINE UNIVERSITY OF MARYLAND SOM

No Disclosures

OBJECTIVES

Define CHIP
 Complex Higher-Risk PCI in Indicated Patients

Two View PointsNew Frontier

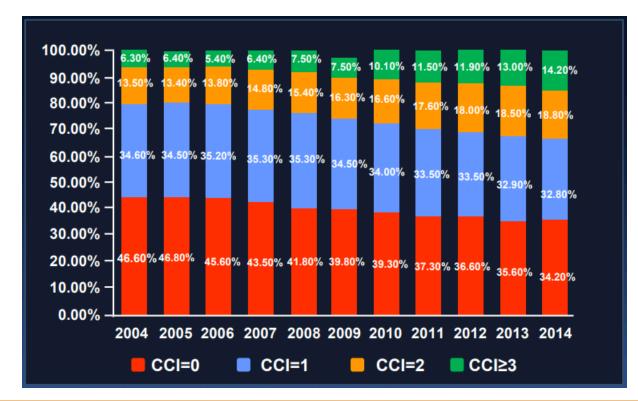
No Man's Land

•Future Directions

DEFINE CHIP

•Complex High-Risk PCI in *Indicated* Patients

 Potential symptom or mortality benefit of revascularization in a non-surgical patient with complex anatomic lesions


Acute scenario bailout

Catheter Cardovasc Interv. 2018 Dec1:92(7):1215-1219

DEFINE CHIP

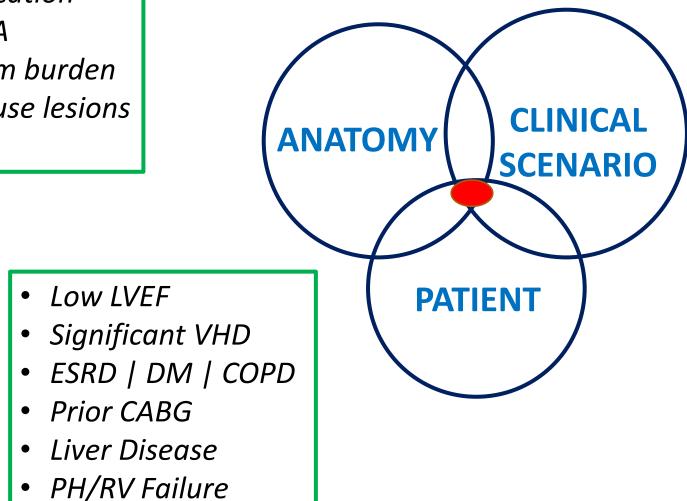
Co-Morbidities in CCL Trend:

NCDR Cath PCI Registry Data

Rios et al. DOI:10.1016J.amjacard.2018

DEFINE CHIP

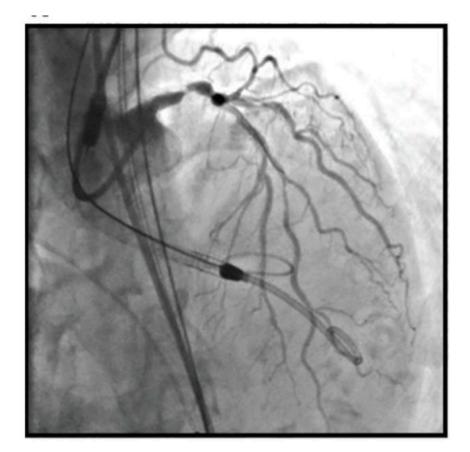
Intersection of:

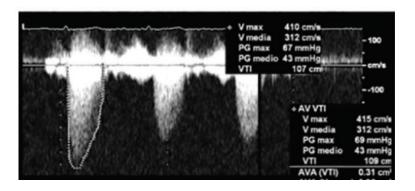

- Complex Coronary Anatomy
- Significant Co-Morbidities
- Complex Clinical Scenario

- Unprotected LM
- Bi/Tri-furcation
- SVG/LIMA
- \uparrow Calcium burden
- Long diffuse lesions

Malignancy

• CTOs

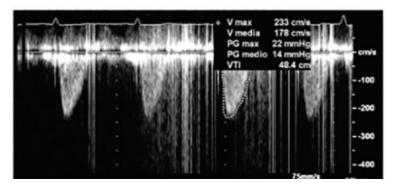



- Hemodynamic Instability
- Post-Arrest
- Peri/Post Trauma
- Post-Pericardiotomy
- Bailout Scenario
- Surgical Turndown

CHIP PATIENT

- 10 patients with severe AS
 ACS Presentation of NSTEMI
- •All LM or MV Disease

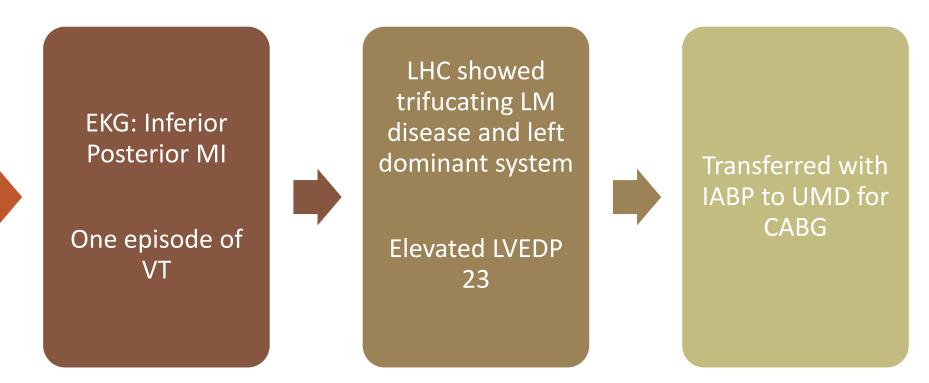
J Invasive Cardio. 2019 Mar;31(3):52-56


CHIP PATIENT

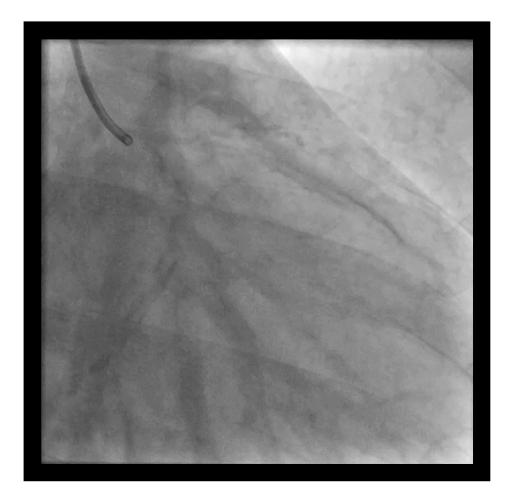
•PCI with Impella support followed by Valvuloplasty as bridge to TAVR

Radial access 8/10 patients

No complications

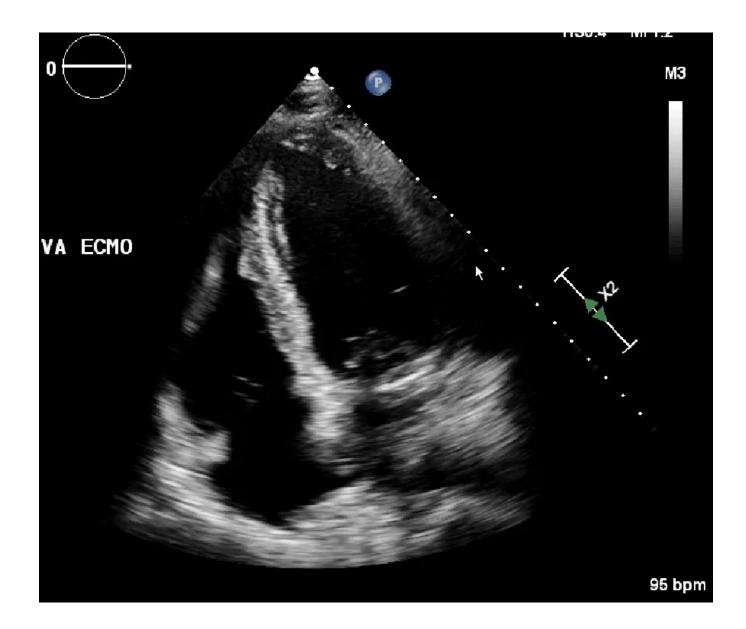


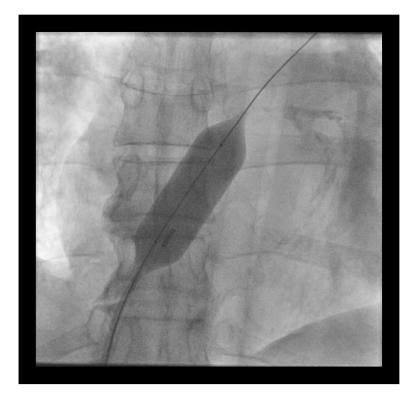
JIC. Volume 31:Issue 3: March, 2019.

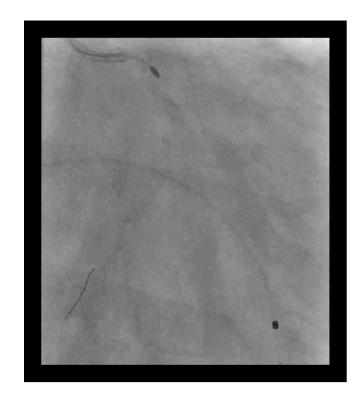

CHIP PATIENT

71M presented to OSH with nose fracture after syncopal spell

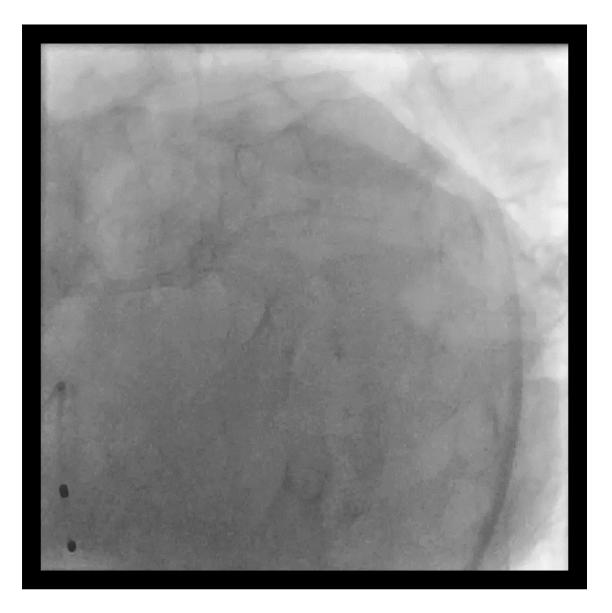
Endorsed 3d chest pain

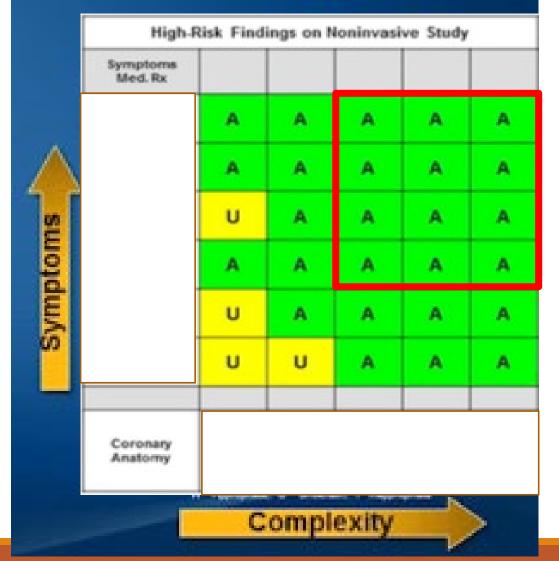


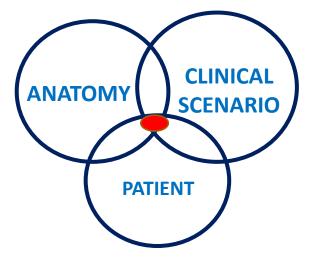












 Patients with anatomically complex disease without surgical revascularization options with prognostically or symptomatically important disease burden

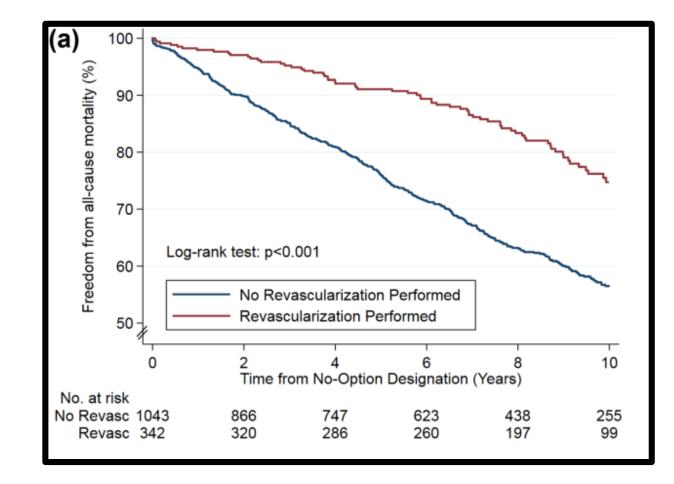
> UNIVERSITY of MARYLAND MEDICAL CENTER

Patel MR et al. J Am Coll Cardiol. 2012,59(9):657-61; CHIP 2019 Jeffrey Moses

- Challenges to treatment
 - Lack of widespread technical and cognitive expertise
 - Unclear mortality/morbidity benefit
 - Perception of lack of benefit amongst operators/referrings

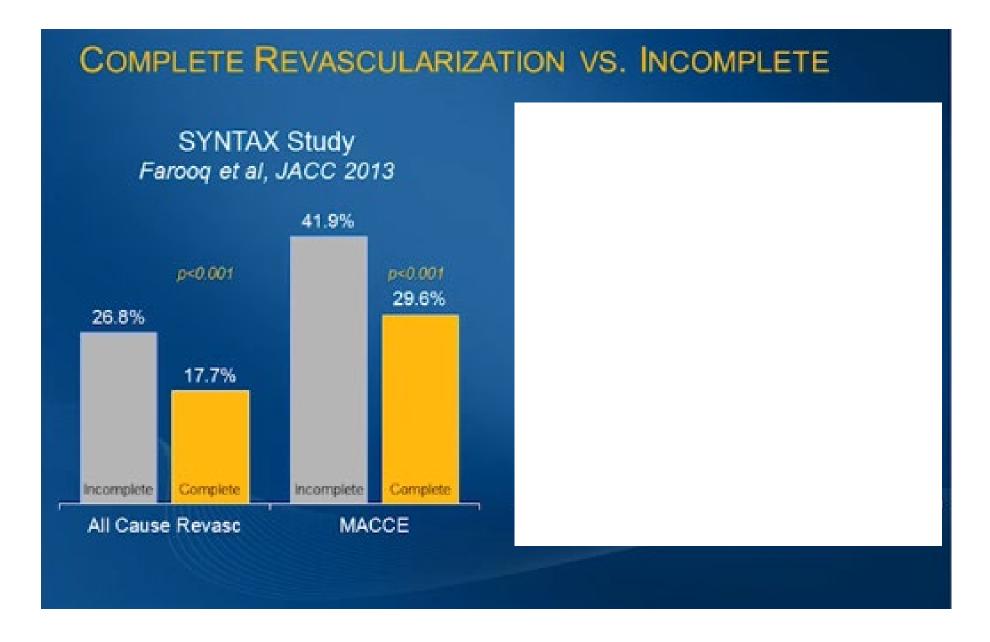
	CABG	PCI
Two-vessel CAD with proximal LAD stenosis	A	A
Three-vessel CAD with low CAD burden (i.e., three focal stenosis, low SYNTAX score)	A	A
Three-vessel CAD with intermediate to high CAD burden (i.e., multiple diffuse lesions, presence of CTO, or high SYNTAX score)	A	U
Isolated left main stenosis	А	U
Left main stenosis and additional CAD with low CAD burden (i.e., one to two vessel additional involvement, low SYNTAX score)	A	U
Left main stenosis and additional CAD with intermediate to high CAD burden (i.e., three vessel involvement, presence of CTO, or high SYNTAX score)	A	11

Circulation 2016;134:422-31; Appropriate Use Crtieria for Coronary Revascularization Focused Update 2012



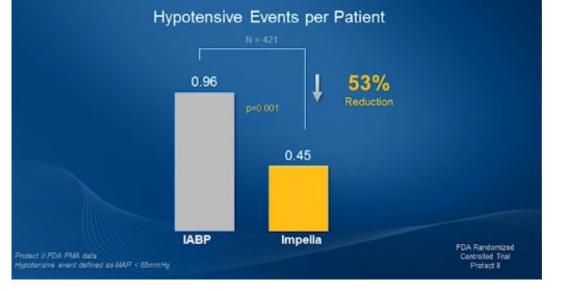
OPTIMIST Program

• 40 state database for refractory angina


• **1996-2014**

- 342/1363 patients underwent revascularization within 2.2 yrs after 'nooption' diagnosis
- 2% v. 4.4% mortality at 5.1 years in revascularized

Catheter Cardiovasc Interv. 2018 Dec1:92(7):1215-1219


CHIP 2018 Florida, Jeffrey Moses

Impella Device

- **PROTECT II Trial**
 - RCT IABP v. Impella 2.5 in patients with LM or 3VD and low EF undergoing revascularization
 - 30d No difference/90d MAE benefit
- USPella Registry
 - Impella in AMICS

•FDA Indication for elective and emergent high-risk PCI

HALF AS MANY HYPOTENSIVE EVENTS PER PATIENT WITH PROTECTED PCI

SCAI-Women in Innovations Announces the Winner of the Complex and High-Risk Interventional Procedures CHIP Fellowship

100,000 Grant from ABIOMED

September 23, 2018

January 25-26, 2019

InterContinental Miami 100 Chopin Plaza Miami, FL 33131

Only practicing US and Canadian interventional cardiologists are eligible to participate. There is no cost to apply.

Supported through educational grants from: MAJOR BENEFACTORS Abbott, ABIOMED, Inc., Boston Scientific Corporation

CHIP AT ACC.19

Practical Strategies for Troubleshooting Complex Cases

MARCH 15, 2019

Marriott New Orleans Mardi Gras A-E Ballroom (3rd floor) 555 Canal St New Orleans, LA 70130

LEARN MORE & REGISTER

CHIP SEATTLE

CHIP: Become a Better Interventionalist by Learning From Complications

AUGUST 2-3, 2019 The Westin Seattle 1900 5th Avenue Seattle, WA 98101

More information coming soon

Kirtane et al. Circulation. 2016;143:422-32.

Roundtable Discusses Protected PCI for High-Risk Patients

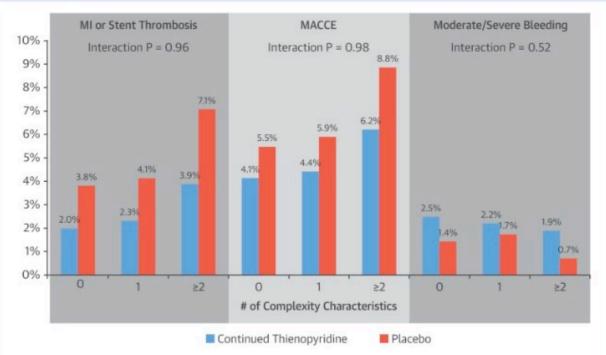
ProtectedPCI.com

CHIP: No Man's Land

- •Lack of DATA
 - Anti-platelet regimens
 - Women
 - Elderly
 - Risk stratification

•Learning Curve

Implications for Public Reporting



CHIP: DAPT

DAPT Trial

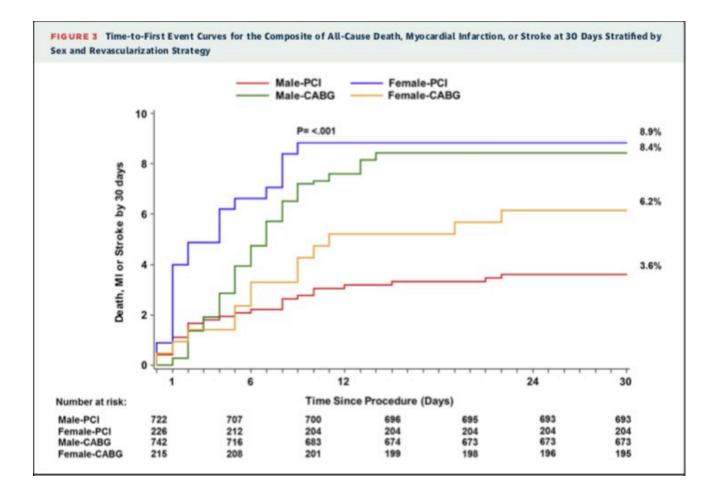
- 11,554 patients -> 12 v. 30 months DAPT
- Randomization at 12m if no bleed/ischemic event
- Subset with complex disease (3700) reviewed
- No interaction of MI/ST/MACCE with procedural complexity
- More events in 1st year in complex patients

Giustino et al. J Am Coll Cardiol 2016;68:1851-64; Yeh et al. J Am Coll Cardiol 2017;70:2213-23

CHIP: WOMEN

	Percent Enrollment Male		
TRIAL	Arm 1	Arm2	
CTO NCDR	78%	78%	
Protect II	80.6%	82%	
Excel	78%	74%	

Outcomes After Coronary Stenting or Bypass Surgery for Men and Women With Unprotected Left Main Disease


The EXCEL Trial

Underpowered Sub-Group Analysis of RCT

- •1905 Patients, 441 Women (23%)
- •Women had more co-morbidities (HTN, CHF, DM)
- •Women had lower Syntax scores, more complete revascularization
- •At 30d, women had more cardiac death/MI/Stroke with PCI than men and compared with CABG

CHIP: WOMEN

No sex interaction after multi-variate analysis

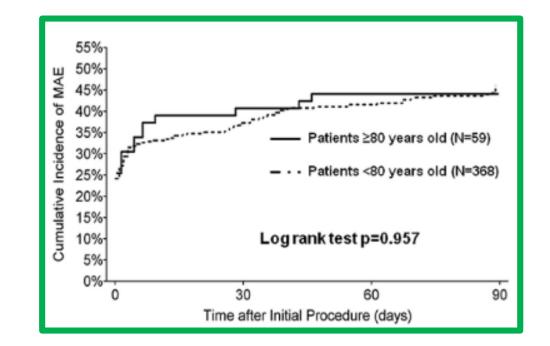
J Am Coll Cardio Intv 2018;11:1234-43

ELDERLY AND PCI

•Higher in-hospital mortality and long-term mortality

- More Vascular and Bleeding complications
- More extensive, complex, calcified, tortuous CAD
- Frailty
- More Co-morbidities PAD/COPD/CKD
- Physiology
 - Endothelial dysfunction
 - Diastolic dysfunction

Shanmugasundaram Madhan. Tex Heart Inst J. 2011; 38(4):398-403



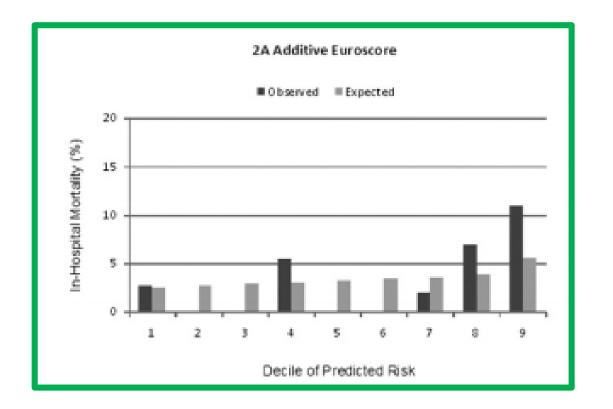
CHIP IN ELDERLY:

* RCT Patients with reduced LVEF undergoing elective HR-PCI with depressed LVEF randomized to Impella or IABP*

•PROTECT II in Octegenarians:

- 59 pts > 80 vs. 368pts < 80
- No significant difference in vascular complications (3.4% v 2.4%)
- No significant difference in 90d MACCE/MACE
- Lesser revascularization in >80 group (1.7% vs 10.4%)
- More calcified and more LM disease in > 80

Peshad et al. Am J Cardiol 2014; 114:657-664


RISK ASSESSMENT

 Unique co-morbidities and clinical features not incorporated in current risk calculators

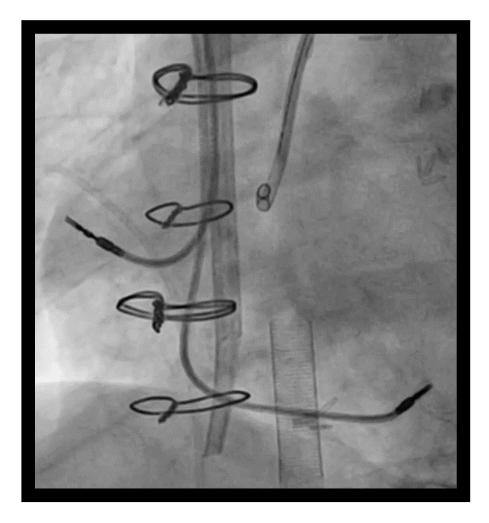
- Surgical inoperability
- Malignancy
- Liver Disease
- Trauma
- Pre-transplant status

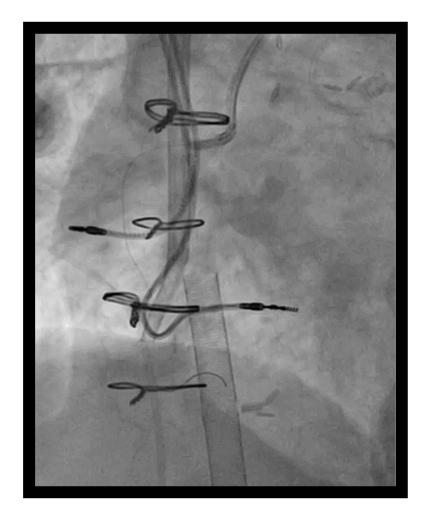
RISK ASSESSMENT

 Combined anatomic and clinical risk calculators may hold promise
 Syntax II Score

> UNIVERSITY of MARYLAND MEDICAL CENTER

Henriques JP et al. International Journal of Cardiology 189 (2015) 272-78


CHIP: No Man's Land


- •Lack of DATA
 - Anti-platelet regimens
 - Women
 - Elderly
 - Risk stratification

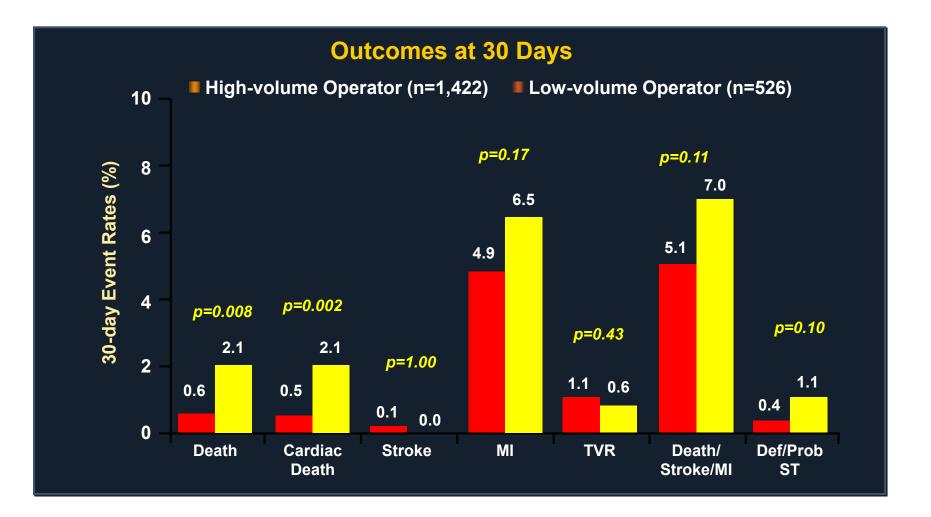
•Learning Curve

Implications for Public Reporting

I never attended a session titled 'Patients I Didn't Cath' at any national or local interventional cardiology conference.

Jaya Mallidi. "The Yin and Yang of Interventional Cardiology: Physician and Proceduralist." Medscape. Februa 🕕 🛄

LEARNING CURVES


- Cognitive
 - Nuances of case selection: Under-treating and Over-treating
 - Communication of risk
- Technical
 - CTO/Atherectomy/Bifurcation/MV PCI
 - Complication management
 - Imaging: IVUS and OCT

HEART TEAM APPROACH

> UNIVERSITY of MARYLAND MEDICAL CENTER

Circulation 2016;134:422-31; JACC:Cardiovascular Interventions Volume 2, Issue 9, 2009:834-42

Learning Curves

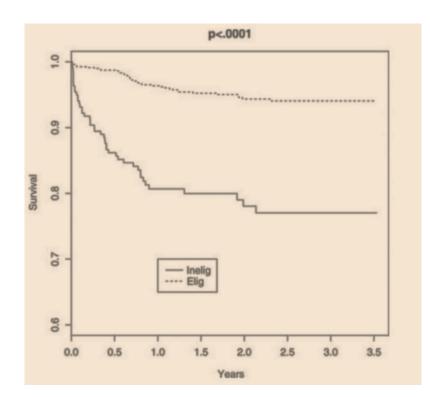
Xu et al, JAm Coll Cardiol Intv 2016;9:2086-93

CHIP: No Man's Land

- •Lack of DATA
 - Anti-platelet regimens
 - Women
 - Elderly
 - Risk stratification

•Learning Curve

Implications for Public Reporting



PUBLIC REPORTING

•Patients undergoing UPLM or MVD PCI at BWH/MGH

•22% of 1013 patients documented in EMR as ineligible for surgery

- •After risk-adjustment, surgical ineligibility independently predictive of in-hospital and long-term mortality
 - 7% vs. 1% In-hospital mortality
- Value based reimbursement

Waldo et al. Circulation Volume 130(25). November 2014

CHIP: FUTRE DIRECTIONS

- Prevalence of 'CHIP' Population
- Outcomes
- Cost of revascularization of CHIP patients
- How widespread are adequately trained ICs to perform complete revascularization across complex lesion subsets
- •What is the long-term durability of PCI in CHIP lesions
- Outcomes in male versus female CHIP patients and elderly patients

CHIP: FUTURE DIRECTIONS

CHIP CENTERS OF EXCELLENCE

- Complex PCI Skills:
 - Bifurcation Disease
 - MVD PCI
 - Rotational Atherectomy
 - Antegrade and Retrograde CTO
- Hemodynamic Support Expertise
- Critical Care Physician/Heart Failure Physician/Shock Team
- Advanced Surgical Capabilities: ECMO, Tandem Heart, DT-VAD

Jeffrey Moses. CHIP at ACC 2019. 'Is CHIP Relevant in 2019?'

CHIP CENTERS

ANNUAL VOLUMES PER OPERATOR:

LEVEL 1	LEVEL 2	LEVEL 3
10+ CTO	20-25+ CTO	50+ CTO
10+ Atherectomy	10+ Atherectomy	15+ Atherectomy
12+ MCS	20+ MCS	50+ MCS

Jeffrey Moses. CHIP at ACC 2019. 'Is CHIP Relevant in 2019?'

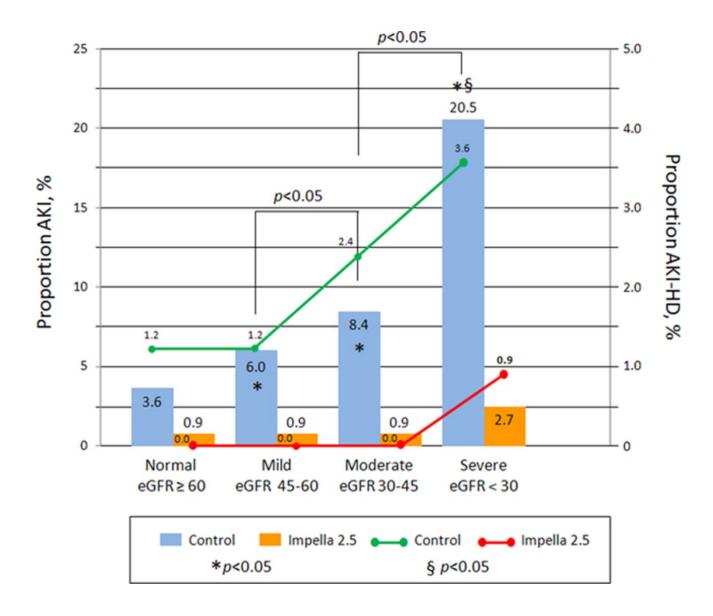
CONCLUSIONS

•CHIP patients are a complex sub-set of IC patients and a growing demographic

•Effective management requires cognitive and technical expertise

•Many areas of uncertainty remain in optimal management and risk-stratification of CHIP patients

Impella Support in PCI with Reduced AKI


Hemodynamic Support With a Microaxial Percutaneous Left Ventricular Assist Device (Impella) Protects Against Acute Kidney Injury in Patients Undergoing High-Risk Percutaneous Coronary Intervention

Michael P. Flaherty , Sadip Pant, Samir V. Patel, Tyler Kilgore, Sujith Dassanayaka, John H. Loughran, Wasiq Rawasia, Buddhadeb Dawn, Allen Cheng, and Carlo R. Bartoli

Originally published 10 Jan 2017 | https://doi-org.proxy-hs.researchport.umd.edu/10.1161/CIRCRESAHA.116.309738 | Circulation Research. 2017;120:692–700

Circulation Research. 2017;120:692-700

Circulation Research. 2017;120:692-700

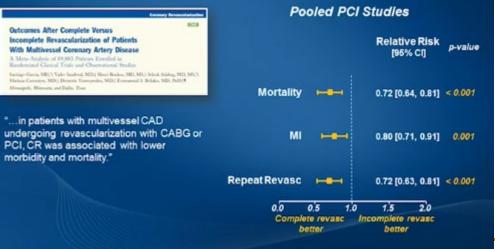
RISK DETERMINATION

The Syntax Score Algorithm					
1. Arterial dominance2. Arterial segments involved per lesionLesion characteristics	A	Lesion 1 Segment 5: 5x2 10 + Bifurcation type A 1 + Heavy calcification 2			
3. Total occlusion i. Number of segments involved	LM>50%	Lesion 1 score: 13			
ii. Age of the total occlusion (>3 months) iii. Blunt stump iv. Bridging collaterals v. First segment beyond the occlusion		Lesion 2 Segment 6: 3.5x2 7 + Bifurcation type A 1 + Angulation<70 1 + Heavy calcification 2			
visible by antegrade or retrograde filling vi. Side branch involvement 4. Trifurcation	LAD>50%	Lesion 2 score: 11			
 i. Number of segments diseased 5. Bifurcation Medina type Angulation between the distal main vessel 		Lesion 3 Segment 11: 1.5x5 7.5 Age T.O. is unknown 1 +Blunt stump 1 +Side branch 1 + Heavy calcification 2			
and the side branch <70° 6. Aorto-ostial lesion 7. Severe tortuosity	LCx 100%	Lesion 3 Score: 12.5			
8. Length >20 mm 9. Heavy calcification	A AM	<u>Lesion 4</u> Segment 1: 1x5 5 Age T.O. is unknown 1 +Blunt stump 1			
 10. Thrombus 11. Diffuse disease/small vessels Number of segments with diffuse disease/small vessels 		+Side branch 1 First segment visualized by contrast 4 2 + Tortuosity 2 + Heavy calcification 2			
	RCA 100%	Lesion 4 Score: 14			

Farooq et al. Heart 2011;97:1902-13

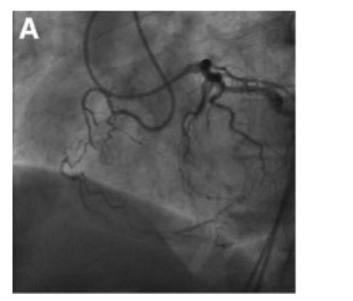

CHIP: New Frontier

Impella Device with success in supporting PCI in these patients

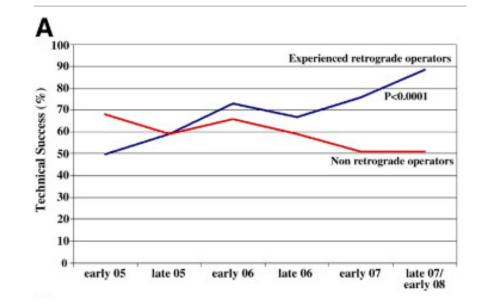

HALF AS MANY HYPOTENSIVE EVENTS PER PATIENT **FDA Indication** WITH PROTECTED PCI Hypotensive Events per Patient "PROTECTED" PCI INDICATION **PATIENTS MOS** 0.96 53% Surgical Risk Coronary Re Low Medium Heart Failure 0.45 Lod. Rx PCI PCI Low PCI Anatomic Risk A U CABG or Medium PCI or CABG PCI U FDA Indicated U Safe & Effective IABP Impella FDA Randomized CABG CABG or PCI Controlled Trial 1-2 ver decare tensive event defined as MAP < 65mmHg Protect II LAD SYNTAX Study

Jeffrey Moses CHIP 2018 Florida.

META-ANALYSIS OF COMPLETE VS. INCOMPLETE REVASCULARIZATION


Garcia et al, JACC Vol. 62, No. 16, 2013

CHIP Subsection	Proposed Core Competencies			
CHIP Population and Revascularization	Current trends in cath lab management, complex PCI cost effectiveness, data in support of complete revascularization, new "CHIP" population			
Precision PCI (Coronary Physiology and Imaging)	Data supporting use of FFR and IFR, basic IVUS imaging interpretation, basic OCT image interpretation (lesion length, vessel size)			
Hemodynamics and Ventricular Support	Right heart hemodynamic analyses, aortic and transvalvular MCS implantation, basic MCS bedside management (positioning, device flow management, waveform analysis)			
Complex Anatomy, Multivessel PCI, Atherectomy	Angiogram analysis, angiographic calcification recognition, basic 2 stent bifurcation techniques, guide support management			
CTO PCI	O PCI Dual catheter angiography and analysis, CTO toolbox fundamentals, comfort with antegrade wire escalation, introduction of antegrade dissection re-entry			
Complication Management	Complication recognition, "call for help" algorithm, toolbox familiarity, post PCI "no-flow" management			
Large Bore Access Management	Closure device management, femoral access up to 14F, radial access up to 7F, femoral cross over technique			



LEARNING CURVES

- CTOs
 - 636 Patients 2005-2008
 - Procedural Outcome of 2 Group: High CTO v. Low CTO
 - Technical Success: 75% v 59%
 - Higher success, increased improvement

Circulation 2016;134:422-31; JACC:Cardiovascular Interventions Volume 2, Issue 9, 2009:834-42

WHITE PAPER

Treatment of Higher-Risk Patients With an Indication for Revascularization

Evolution Within the Field of Contemporary Percutaneous Coronary Intervention

Roundtable Discusses Protected PCI for High-Risk Patients

(()

Kirtane et al. Circulation. 2016;143:422-32.

BACKDROP OF CHIP

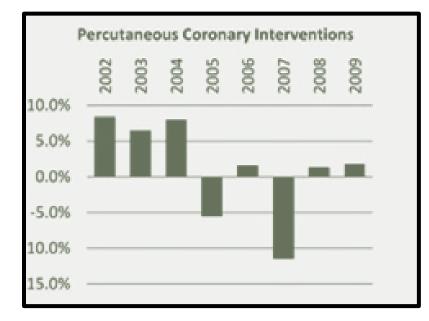
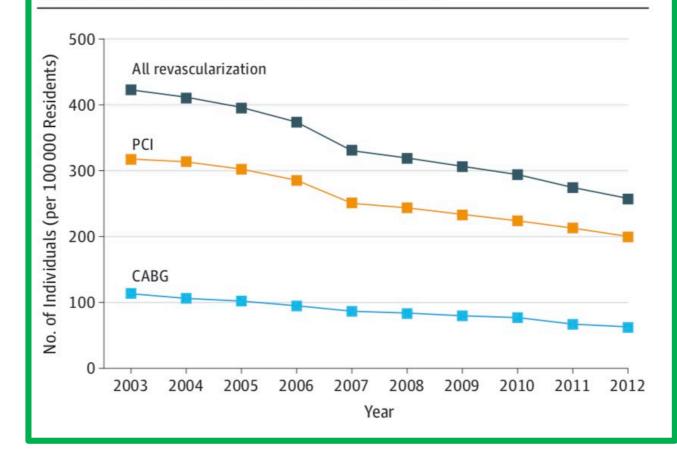
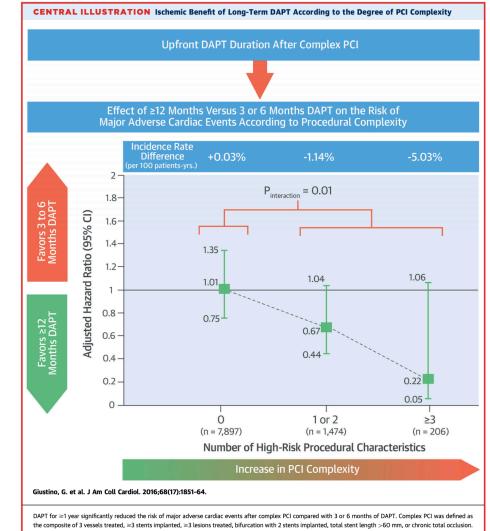



Figure 1. Temporal Trends in Population-Wide Rates of Coronary Revascularization in Massachusetts, 2003-2012


Riley et al. Circulation: Cardiovascular Quality and Outcomes. 2011;4:193-97; Yeh et al. JAMA Internal Medicine. March 2015. Volume 175 🗰 UNIVERSITY MARYLAND

CHIP: DAPT

 Post-hoc pooled analysis of RCTs evaluating DAPT duration

1680/9577 underwent complex PCI

Increase in PCI complexity favored
 >12m with regards of MACE

DAPT for \approx 1 year significantly reduced the risk of major adverse cardiac events after complex PCI compared with 3 or 6 months of DAPT. Complex PCI was defined as the composite of 3 vessels treated, \approx 3 stents implanted, \approx 3 lesions treated, bifurcation with 2 stents implanted, total stent length >60 mm, or chronic total occlusion. The y-axis displays the adjusted hazard ratios for long-term DAPT or risk of major adverse cardiac events. The x-axis displays the number of high-risk procedural features. Incidence rate differences per 100 patient-years of follow-up per number of high-risk procedural features are displayed above the plot. Complex PCI is associated with increased risk of major adverse cardiac events with a magnitude comparable to that of traditional clinical risk factors (i.e., prior myocardial infarction or acute coronary syndrome presentation). The magnitude of the anti-ischemic effect of long-term DAPT rented to be greater for increase in PCI complexity. CI = confidence interval; DAPT = dual antiplatelet therapy; IRD = incidence rate differences; PCI = percutaneous coronary intervention.

UNIVERSITY of MARYLAND MEDICAL CENTER

Giustino et al. J Am Coll Cardiol 2016;68:1851-64; Yeh et al. J Am Coll Cardiol 2017;70:2213-23

CHIP: WOMEN

Table 2. Hazard of PCI as Compared With CABG for 5-Y All-Cause Death in Women and Men

Trial		HR (95% CI)	P Value	P Value for Interaction
SYNTAX	Women	2.213 (1.242–3.943)	0.007	
	Men	1.001 (0.736–1.361)	0.995	
	Ratio of HR _{women vsmen}	2.192 (1.140-4.218)		0.019

J Am Coll Cardio Intv 2018;11:1234-43; Circulation:Cardiovascular Interventions. 2017; 10

