

NUTRITION IN MEDICINE: CALORIES OR THERAPEUTIC MODALITY

AMERICAN COLLEGE OF OSTEOPATHIC INTERNISTS
CLINICAL CHALLENGES IN INPATIENT CARE

MATTHEW BECHTOLD MD, FACP, FACC, ACAF DIVISION OF CASTROENTEROLOGY UNIVERSITY OF MISSOURI - COLUMBIA

MARCH 25, 2017

DISCLOSURE

AMERICAN COLLEGE OF OSTEOPATHIC INTERNISTS NATIONAL MEETING

Nestle Nutrition Institute Speaker & Consultant

I will not discuss off label use or investigational use in my presentation

Matthew Bechtold MD bechtoldm@health.missouri.edu

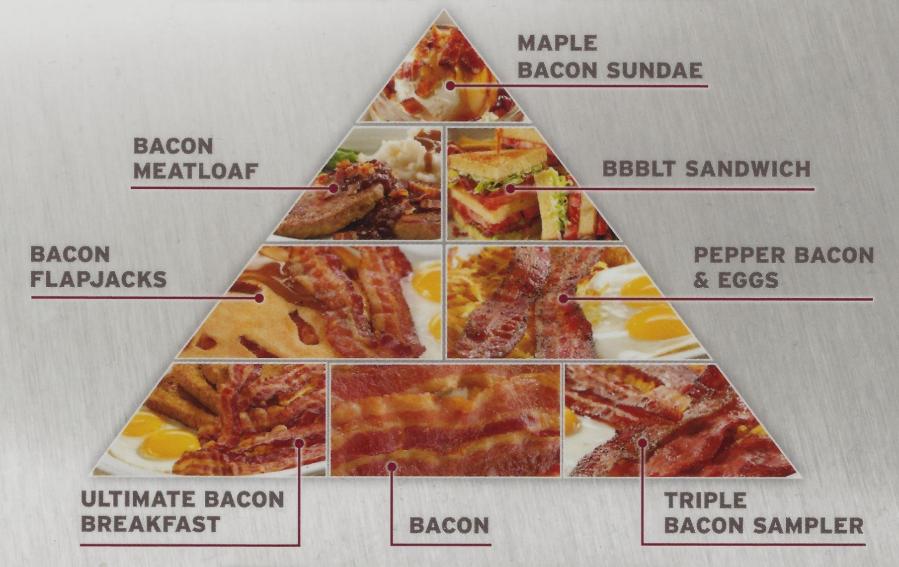
QUESTIONS

How important is nutrition?

How do you assess nutrition needs?

Are there any nutrition therapies?

What is the future of nutrition?


Why is abbreviated such a long word?

Why is braille on drive-up ATMs?

Is there another word for synonym?

What happens when you get scared half-to-death twice?

BECHTOLD'S FOOD THE BACON PYRAMID

WHY ME?

- 1. I find nutrition fascinating
- 2. Nutrition deals with the gut and the gut is my thing
- 3. I have completed a nutrition fellowship
- 4. I am currently serving on 2 national ASPEN committees and 1 national task force for nutrition
- 5. I have published numerous articles and book chapters in nutrition

WEIGHT LOSS > 35%

†RISK OF DEATH

PROTEIN STORAGE LOSS > 30%

FAT STORAGE LOSS > 70%

CELIAC DISEASE

Gluten-Free Diet Folate, Fe, Fat-Soluble Vitamins Trace Minerals

CIRRHOSIS

Do Not Limit Protein
Watch For Hypoglycemia
Nutrition Improves Outcomes in Transplant

SHORT GUT SYNDROME

Maximize Nutrition Avoid Too Much CHO Ileal Adaptation

DUMPING SYNDROME

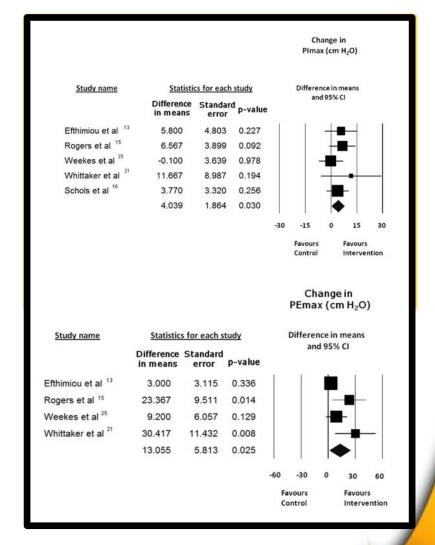
Frequent Small Meals
Avoid Simple CHO
Fluid Intake Separated From Meal

REFEEDING SYNDROME

Go Slow Watch Phosphorus

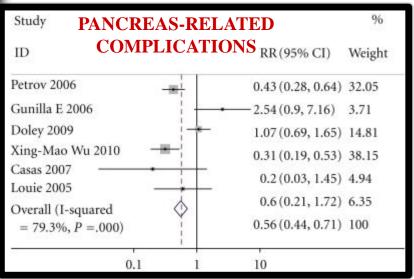
FOOD ALLERGIES

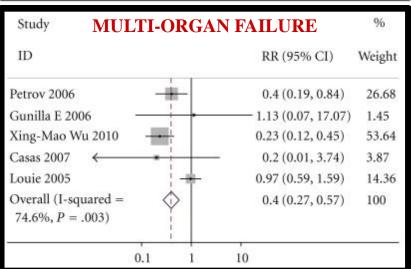
Just Say NO Supplements

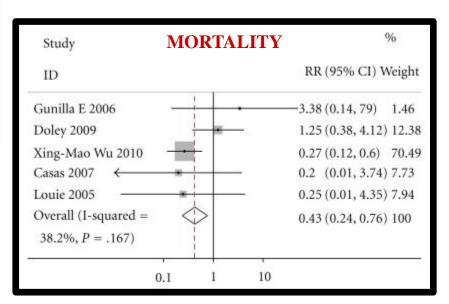


EOPD

Meta-analysis
12 RCTs (n=448)
Stable COPD


				Change in handgrip strength
Study name	Statistic	s for each s	tudy	Std diff in means
	Std diff in means	Standard error	p-value	and 95% CI
Efthimiou et al 13	1.071	0.572	0.061	
Rogers et al 15	1.080	0.414	0.009	
Weekes et al 25	0.148	0.271	0.586	
Steiner et al 24	0.501	0.266	0.059	
	0.565	0.217	0.009	
				-3.0 -1.5 0 1.5 3.0
				Favours Favours


Dietary advice (1)
or
Oral supplementation (10) vs Nothing
or
Enteral tube feeds (1)


NUTRITIONAL IMPACT **PANCREATITIS**

Meta-analysis 6 RCTs (n=326)

Predicted severe acute pancreatitis

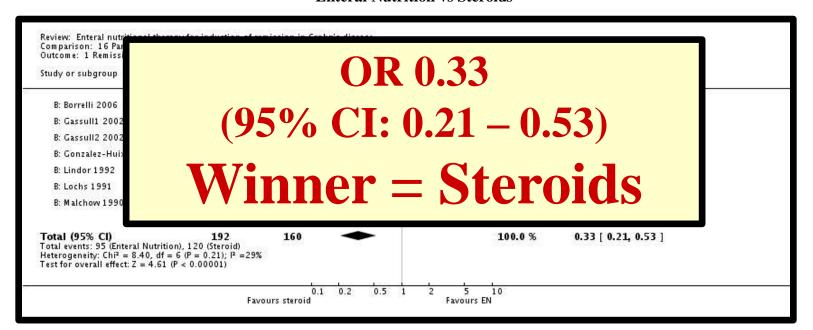
 $EN \le 72$ hours vs TPN

NUTRITIONAL IMPACT PANCREATITIS

RCT (n=205)
19 Dutch Centers

Outcome	Early Tube Feeding (N = 101)	On-Demand Tube Feeding (N = 104)	Risk Ratio (95% CI)	P Value
Primary composite end point: infection or death — no. (%)	30 (30)	28 (27)	1.07 (0.79–1.44)	0.76
Secondary end points				
Infection — no. (%)†	25 (25)	27 (26)	0.97 (0.70-1.34)	0.87
1.6.1	0.70	75 (74)	0.74 (0.42. 3.26)	0.20

TYPE II STATISTICAL ERROR? LATE START OF EARLY GROUP FEEDING? SEVERITY SCALES ACCURATE?


wechanical ventilation — no. (%)	12 (12)	14 (13)	0.93 (0.60-1.44)	0.84
New-onset organ failure — no./total no. at risk (%)¶				
Single organ failure	26/67 (39)	31/73 (42)	0.92 (0.65-1.32)	0.73
Persistent single organ failure	10/67 (15)	10/73 (14)	1.05 (0.65-1.70)	1.00
Multiple organ failure	7/67 (10)	6/73 (8)	1.14 (0.67-1.95)	0.77
Persistent multiple organ failure	4/67 (6)	4/73 (5)	1.05 (0.51-2.14)	1.00

Nasoenteric tube feeds ≤ 24 hours vs Oral Diet/tube feeds @ 72 hours

Meta-analysis 7 RCTs (n=352)

INDUCING REMISSION IN CROHN'S DISEASE Enteral Nutrition vs Steroids

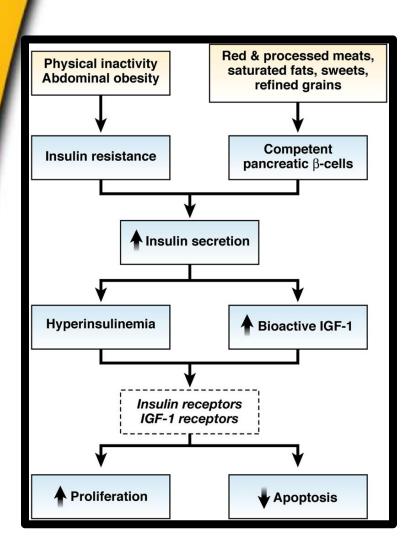
IBD

Meta-analysis 5 RCTs (n=403)

INDUCING AND SUSTAINING REMISSION IN CROHN'S DISEASE

	Favors ED + Infliximab		Favors Infliximab Alone		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Hirai et al - 2012	31	45	24	57	24.4%	3.04 [1.34, 6.92]	
Matsumoto et al - 2005	15	49	4	12	16.5%	0.88 [0.23, 3.39]	
Sazuka et al - 2012	23	29	22	45	13.2%	4.01 [1.37, 11.71]	
Tanaka et al - 2006	30	51	22	59	31.1%	2.40 [1.11, 5.18]	
Yamamoto et al - 2009	25	32	16	24	14.8%	1.79 [0.54, 5.89]	
Total (95% CI)		206		197	100.0%	2.43 [1.58, 3.74]	•
Total events	124		88				
Heterogeneity: Chi*= 3.50	6, df = 4 (P = 0.47)	P= 0%					
Test for overall effect; Z=			INDUCTI	ON C	FRE	MISSION	0.01 0.1 1 10 100 Favors Infliximab Alone Favors EN + Infliximab
							Favors initizimas Alone Favors EN + Initizimas

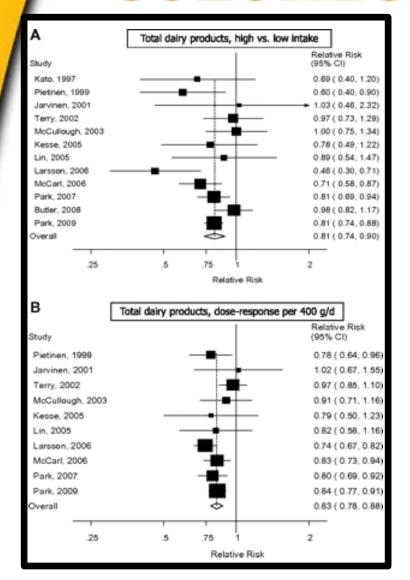
	Favors EN + Infli	ximab	Favors Inflixima	b Alone		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Hirai et al - 2012	31	45	24	57	46.5%	3.04 [1.34, 6.92]	
Sazuka et al - 2012	23	29	22	45	25.2%	4.01 [1.37, 11.71]	_ -
Yamamoto et al - 2009	25	32	16	24	28.3%	1.79 [0.54, 5.89]	
Total (95% CI)		106		126	100.0%	2.93 [1.66, 5.17]	•
Total events	79		62				
Heterogeneity: Chi ² = 1.0	0, df = 2 (P = 0.61)	; I² = 0%					100
Test for overall effect: Z =	3.71 (P = 0.0002)		REMI	SSIO	N > 1	YEAR	0.01 0.1 1 10 100 Favors Infliximab Alone Favors EN + Infliximab


Enteral nutrition therapy (elemental or polymeric formula, with or without low-fat diet restriction) with infliximab

VS

Infliximab alone with no dietary manipulation

"NUTRITIONAL IMPACT COLORECTAL CANCER



INCREASE RISK

Red Meat **Processed Meat** Highly Refined Grains and Starches Sugars

NUTRITIONAL IMPACT EOLORECTAL CANCER

Meta-analysis 12 Prospective Cohort Studies (n=1,170,942)

FUTURE IMPACT

Vitamin D Fiber Folic Acid Magnesium

NUTRITIONAL ASSESSMENT

MEDICAL HISTORY

Nutritional deficiencies

in diet

Eating habits

Food diary

Dieting???

PHYSICAL EXAM

BMI

Ideal body weight (IBW)

Present body weight (PBW)

Deviation from average body weight over past 3-6 months

NUTRITIONAL ASSESSMENT

ANTHROPOMORPHIC MEASUREMENTS HAND-HELD CALIPERS BODY MASS INDEX

BIOCHEMICAL MEASUREMENTS

ALBUMIN
PREALBUMIN
TRANSFERRIN
CREATININE

IMMUNOLOGIC MEASUREMENTS LYMPHOCYTE COUNT

NUTRITIONAL ASSESSMENT

• BMI = Weight (kg) / Height (m) 2

BMI TABLE	Caucasians	Asians
Normal	< 25	< 23
Overweight	25 - 29.9	23 - 29.9
Obese	30 – 39.9	30 – 39.9
Severe Obesity	≥ 40	≥ 40

• Problems:

– Muscle mass does not count:

Terrell Owens BMI = $6^{\circ}3^{\circ}$ and 224 lbs = 28

Dwayne Johnson (AKA The Rock) BMI = 6'5" and 260 lbs = 31

NUTRITIONAL ASSESSMENT GLOBAL ASSESSMENTS

NO SINGLE TOOL IS AN ACCURATE PREDICTOR OF NUTRITIONAL STATUS

Heat produced by oxidation

Resting energy expenditure: Measured by ventilated hood over pt's head x 2 hrs $(O_2 \text{ and } CO_2 \text{ content})$

Subjective Global Assessment

SUBJECTIVE GLOGAL ASSESSMENT

(Select an appropriate category with a checkmark, or enter numerical value where indicated by "#")
A. History 1. Weight change Overall loss in past 6 months: amount = # kg; percent loss = # Change in past 2 weeks: increase, no change, decrease.
2. Dietary intake change (relative to normal)
 Gastrointestinal symptoms (that persisted for >2 weeks) none, nausea, vomiting, diarrhea, anorexia.
4. Functional capacity ————— No dysfunction (eg, full capacity), ———————————————————————————————————
Disease and its relation to nutritional requirements Primary diagnosis (specify):
Metabolic demand (stress): no stress, low stress, high stress.
B. Physical (for each trait specify: 0 = normal, 1+ = mild, 2+ = moderate, 3+ = severe). #
C. SGA rating (select one) A = Well nourished B = Moderately (or suspected of being) malnourished C = Severely malnourished

FEEDING

METHODS

ENTERAL FEEDING

By Mouth Tube Feeding

PARENTERAL FEEDING

Total Parenteral Nutrition
Peripheral Parenteral Nutrition

WHICH ONE?

"If the gut works, use it!"

- Stevan Whitt MD

BENEFIT

Strokes
Head & Neck Cancers
Life-Expectancy > Few Months

MAY NOT BENEFIT

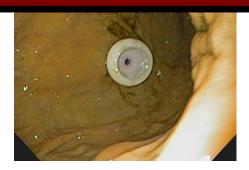
Alzheimer's Dementia

Roth. Biomedical Ethics Seminar 2007 Finucane, et al. J Am Med Dir Assoc 2007 Finucane, et al. JAMA 1999 Cervo, et al. Geriatrics 2006 Roth, et al. Stroke 2002

PEGs

REALITY OF PEG TUBES

Nutritional status does not necessarily improve


Diarrhea, clogging of tube, pulling out of tube Increased nutrients do not necessarily result in meaningful clinical outcomes

Continued risk of aspiration
Survival rates same for PEG and spoon fed patients
Mortality rates

2% to 27% at 30 days and 50% or more at 1 year

Restraints often required leading to discomfort and compromised autonomy
Denied pleasure of eating
Adverse effects with feeding tube due to complications

Roth. Biomedical Ethics Seminar 2007 Finucane, et al. J Am Med Dir Assoc 2007 Finucane, et al. JAMA 1999 Cervo, et al. Geriatrics 2006 Roth, et al. Stroke 2002

PEG COMPLICATIONS

Major Complications

Necrotizing Soft

Tissue Infection

Buried Bumper

Syndrome

Colocutaneous

Fistula

Inadvertent PEG

Removal

Minor Complications

Wound Infection

Peristomal Leakage

Pneumoperitoneum

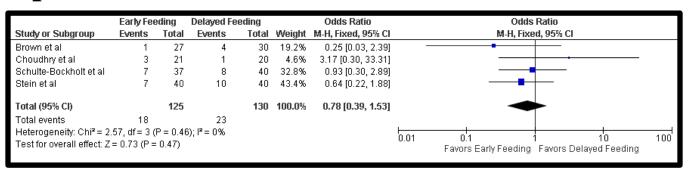
Ileus

Bleeding

Ulceration

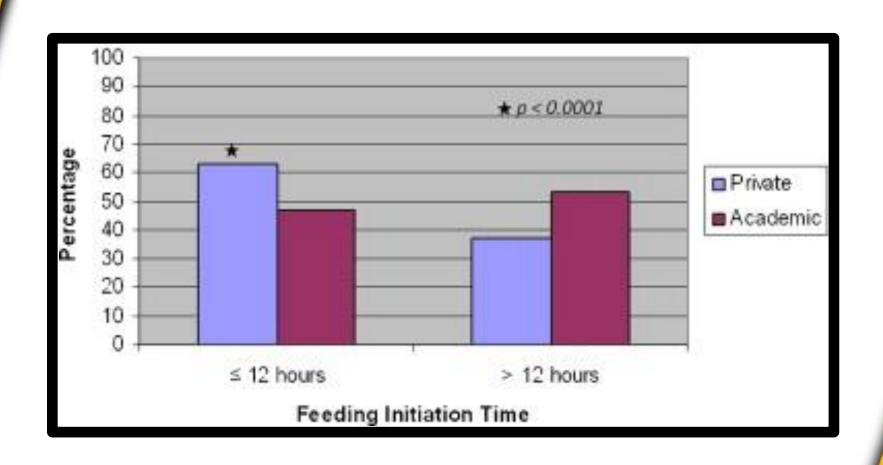
Clogging

Tube Dysfunction


Gastric Outlet Obstruction

	%
PEG tubes performed per month	
1–5	64.3
6–10	32.1
>11	3.6
Awareness of recent literature regard feeding after PEG tube	ding early
Aware	81.5
Unaware	18.5
Respondents timing of initiation of f	feedings after PEG tube
<3 hr	10.7
4–8 hr	28.6
9–15 hr	17.9
16–24 hr	39.3
>24 hr	3.5

Complications:


• Death ≤ 72 hours:

	Early Feeding Delayed Feeding		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Choudhry et al	0	21	1	20	21.2%	0.30 [0.01, 7.87]	-
Schulte-Bockholt et al	2	37	3	40	38.5%	0.70 [0.11, 4.47]	
Stein et al	2	40	3	40	40.3%	0.65 [0.10, 4.11]	
Total (95% CI)		98		100	100.0%	0.60 [0.18, 1.99]	
Total events	4		7				
Heterogeneity: Chi ² = 0.21, df = 2 (P = 0.90); I^2 = 0% Test for overall effect: Z = 0.84 (P = 0.40)							0.01 0.1 1 10 100 Favors Early Feeding Favors Delayed Feeding

Residuals during first 24 hours:

	Early Fee	eding	Delayed Fe	eding	Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Choudhry et al	2	21	1	20	6.4%	2.00 [0.17, 23.96]	
Chumley et al	13	40	11	40	51.4%	1.27 [0.49, 3.31]	· · · · · · · · · · · · · · · · · · ·
Schulte-Bockholt et al	1	50	0	50	3.4%	3.06 [0.12, 76.95]	
Stein et al	10	37	8	40	38.8%	1.48 [0.51, 4.28]	-
Total (95% CI)		148		150	100.0%	1.46 [0.75, 2.84]	•
Total events	26		20				
Heterogeneity: Chi ² = 0.	.35, df = 3 (P = 0.99	5); I² = 0%				
Test for overall effect: Z	= 1.11 (P =	0.27)					0.01 0.1 1 10 100 Favors Early Feeding Favors Delayed Feeding

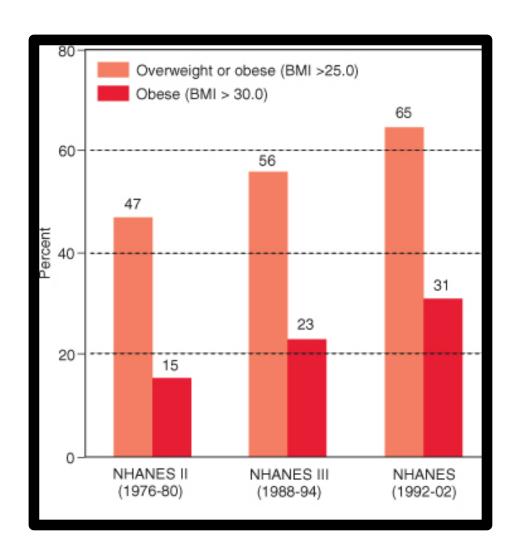
444 PEGs

June 2006 – December 2011

PARAMETER	EARLY FEEDING (≤ 4 HOURS)	DELAYED FEEDING (> 4 HOURS)	P-VALUE						
	MORTALITY								
< 24 hours	0	0	NS						
24-72 hours	2	0	0.20						
3-30 days	14	19	0.86						
	COMPLICATIONS								
Wound Infection	5	4	0.52						
Melena	0	3	0.26						
Vomiting	9	16	0.42						
Leakage	4	2	0.41						
Stomatitis	0	4	0.13						
Other	27	28	0.47						

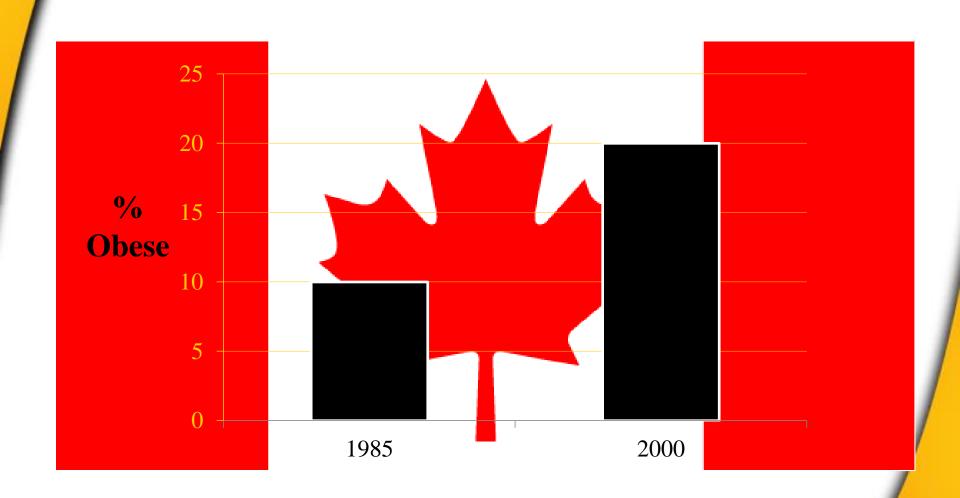
SHORT GUT SYNDROME

ELDERLY

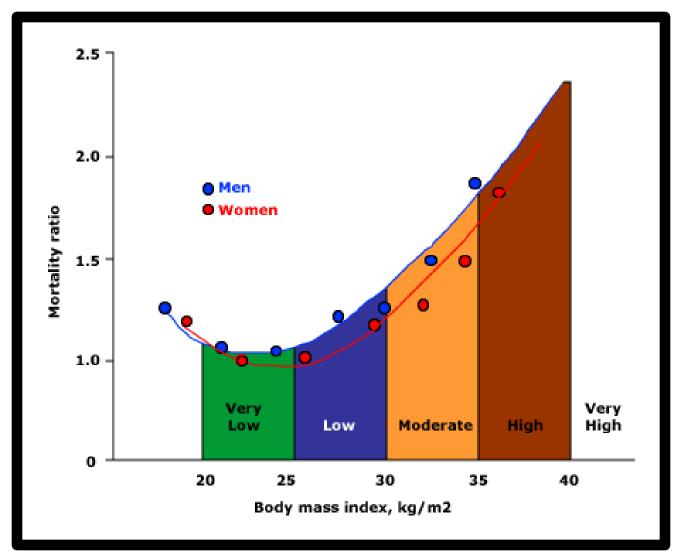

EATING DISORDERS

OBESITY

ICU

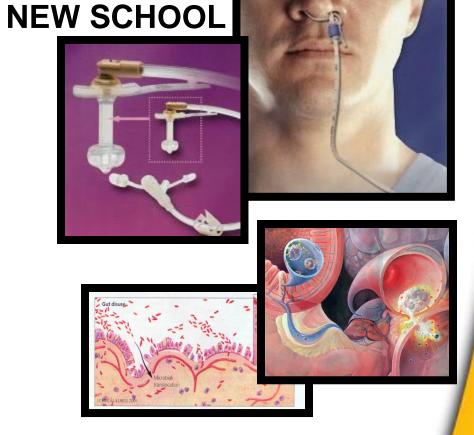


OBESITY



OBESITY

OBESITY


CRITICAL CARE

CHANGING PARADIGM: NUTRITION SUPPORT TO NUTRITION THERAPY

OLD SCHOOL

"Skeletons in the Closet"
PEM in 50% pts US hospitals
Support to prevent PEM
PN-based, little effect

Maintain gut integrity Immune-modulation Down-regulate inflammation EN-based, huge effect

PERSPECTIVE ON ENTERAL FEEDING, OXIDATIVE STRESS, AND PHARMACONUTRITION

CRITICAL CARE NUTRITION

GUT DOES MORE THAN CALORIES

NUTRITION IN CRITICAL CARES CALORIES OR THERAPEUTIC MODALITY

THE ROLE OF IMMUNONUTRITION

CONTROVERSY OF IMMUNE FORMULAS

