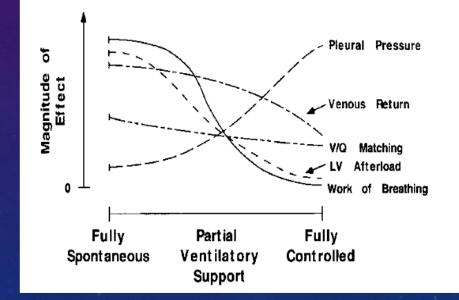
VENTILATOR STRATEGIES Patrick Cullinan, DO FCCM, FACOI, FACOEP San Antonio, TX

No Disclosures

DISCUSSION OBJECTIVES


- 1. How Positive Pressure Ventilation (PPV) helps
 - Reduce work of breathing (WOB)
 - Restore adequate gas exchange
- 2. The essentials in PPV
 - Variables Involved
 - Modes of Ventilation
- 3. Clinical Considerations
 - Volume/Pressure Relationship (Time, Flow, Trigger)
- 4. Ventilator Liberation

WHY VENTILATE

- Unprotected and unstable airways (e.g., coma)
 - Intubation and IPPV allows to
 - Airway maintenance
 - Minimize risk of aspiration
 - Maintain adequate alveolar ventilation
- Hypercapnic respiratory acidosis
 - IPPV and NIPPV
 - WOB and prevent respiratory muscle fatigue (speeds recovery when fatigue is already present)
 - Maintain adequate alveolar ventilation (prevent or limit respiratory acidosis as needed)
- Hypoxic respiratory failure
 - Alveoli collapse or fluid filled alveoli
 - IPPV and NIPPV help correct hypoxemia as it allows to
 - Deliver a high FiO₂ (100% if needed during IPPV)
 - Reduce shunt by keeping alveoli open

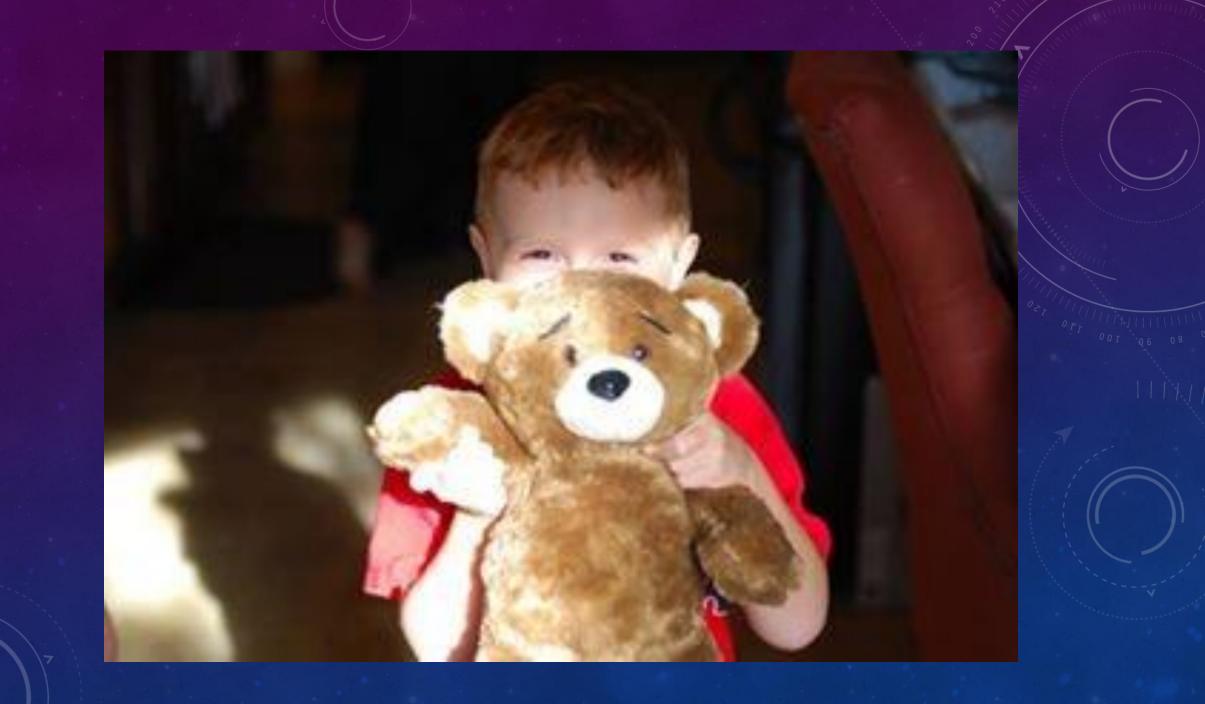
PPV CONSIDERATIONS

- Positive and negative effects associated with PPV
 - Circulation
 - Reduced venous return and afterload
 - Hypotension
 - Cardiac output effect
 - Lungs
 - Increased thoracic pressure
 - Barotrauma
 - Ventilator-induced lung injury (VILI)
 - Air trapping / Auto-Peep
 - Gas exchange
 - Compression of capillaries PEEP
 - May increase dead space V_D (compression of capillaires)
 - Shunt peep manuever

PPV INITIATED BY FOUR VARIABLES

- Trigger
 Initiates the breath
- Control
 - **Controls delivery**
- Limit
 - Terminates the breath
- Cycle
 - Initiates the frequency

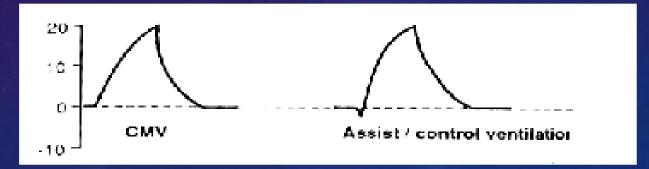
- Mandatory
 - A/C, SIMV
- Pressure
 - PC (Pressure Control, Time Cycled)
- Dual Control
 - PRVC (A/C, SIMV)
 - APRV
- Spontaneous
 - CPAP
 - Pressure Support


WORKLOAD BETWEEN PATIENT & VENTILATOR

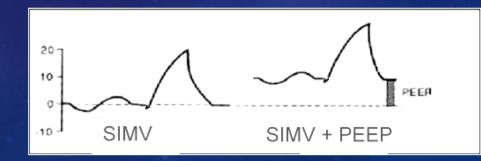
- Ventilator Work +

+ Patient's work -

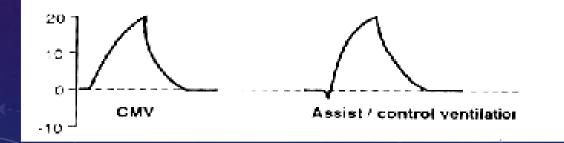
How the work of breathing partitions between the patient and the ventilator depends on:

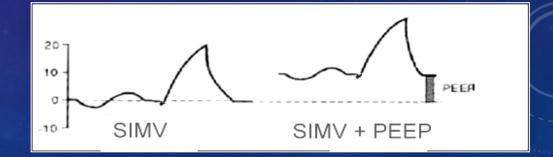

- 1. Mode of ventilation (e.g., in A/C majority of work done by the ventilator)
- 2. Patient effort and synchrony with the mode of ventilation
- 3. Specific settings of a given mode (e.g., level of pressure in PS and set rate in SIMV)

Mandatory Ventilation


ASSIST CONTROL (A/C)

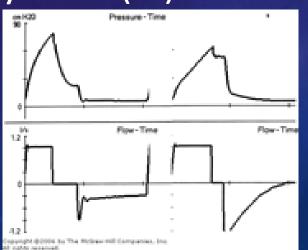
 A/C - Tidal volume (V_T) of each delivered breath is the same, regardless of whether it was triggered by the patient or the ventilator. At the start of a cycle, the ventilator senses a patient's attempt at inhalation by detecting negative airway pressure or inspiratory flow.


SYNCHRONIZED INTERMITTENT MANDATORY VENTILATION (SIMV)


SIMV - Delivers a minimum number of fully assisted breaths per minute, synchronized with patient respiratory effort. Breaths are patientor time-triggered, flow-limited, and volumecycled. However, any breaths taken between volume-cycled breaths are not assisted; the volumes of these breaths are determined by the patient's strength, effort, and lung mechanics.

CLINICAL CONSIDERATIONS

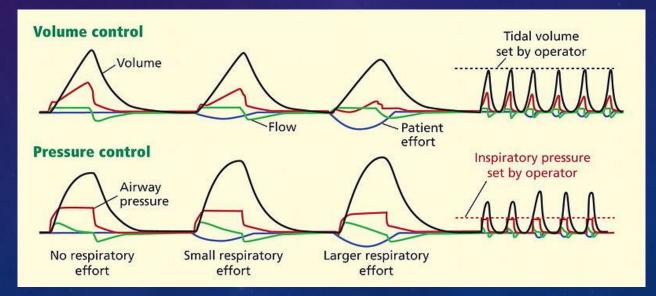
- Volume Control Modes (A/C, SIMV)
 - Guaranteed V_T regardless of compliance
 - In non-variable flow modes (A/C, SIMV) PIFR demands may not be met
 - Can cause increased Paw leading to barotrauma, volutrauma and adverse hemodynamic effects



PRESSURE CONTROL

PRESSURE – TIME CYCLED

- Pressure
 - PC ventilator delivers a flow to maintain the preset pressure at a preset respiratory rate over a preset inspiratory time (IT)

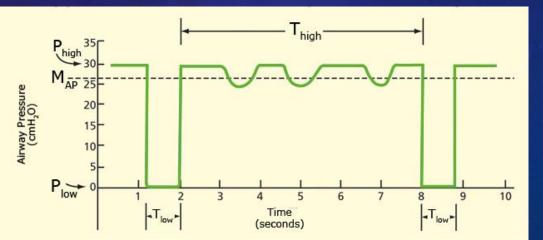


- Clinical Considerations
 - Ability to manage Paw
 - Variable V_T as pulmonary mechanics (compliance) change
 - Potential for excessive
 V_T as compliance
 improves

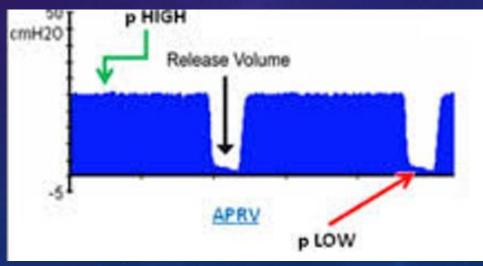
DUAL CONTROL MODES

PRESSURE REGULATED VOLUME CONTROL (PRVC/VC+)

 PRVC - Pressure modulates (up or down) to achieve a preset tidal volume. Breaths are controlled by pressure (inspiratory +PEEP) and volume, limited by pressure (inspiratory + PEEP) and cycled by time.


CLINICAL CONSIDERATIONS - PRVC

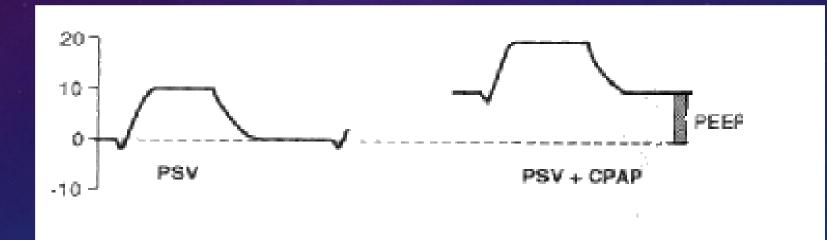
- Advantage of both V and P control maintains minimum Paw to provide constant $V_{\rm T}$
- Manages ventilation breath-to-breath (P ↑ or ↓ to maintain V_T based on V_T of previous breath)
- The pressure limit fluctuates between 0 cm H₂O above the PEEP level to 5 cm H₂O below the High-pressure alarm
- Improved patient-ventilator synchrony
- Variable PIFR
- If patient demand ↑'s pressure level may ↓ when support is most necessary resulting in ↓ Pmean leading to hypoxemia


AIRWAY PRESSURE RELEASE VENTILATION (APRV)

 APRV - Time cycled pressure mode that cycles between two different baseline pressures (Hi/Lo) based on time that can by synchronized with patient effort. Controlled ventilation can be maintained by time cycling and occurs when pressures changes from high to low. PS can be added. Inverse Ratio.

CLINICAL CONSIDERATIONS - APRV

- Mandatory breaths occur when P changes from High to Low
- Variable Flow
- Preservation of spontaneous breathing at high CPAP
- ♦ WOB, ♦ barotrauma, ♦ circulatory compromise, ♦ sedation
- V_T changes with alteration in compliance



SPONTANEOUS

- Continuous positive airway pressure/Pressure Support ventilation (CPAP/PSV) – Flow Cycled
 - CPAP demand breaths with the pressure level during inspiration equal to the preset-PS + PEEP and cycled by time or flow.
- Non-Invasive Positive Pressure Ventilation (NIPPV)
 - BiPAP is a continuous positive airway pressure (CPAP) mode used during noninvasive positive pressure ventilation. It delivers a preset inspiratory positive airway pressure (IPAP) and expiratory positive airway pressure (EPAP). Rate can be set to guarantee bursts of IPAP.

CLINICAL CONSIDERATIONS

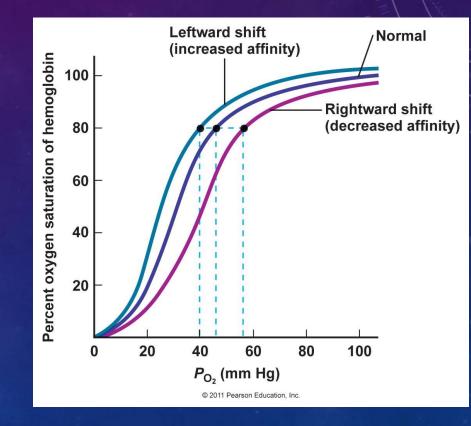
- Pressure Support
 - Always use in SIMV preset RR

VENTILATOR-INDUCED LUNG INJURY

- Two primary mechanistic factors:

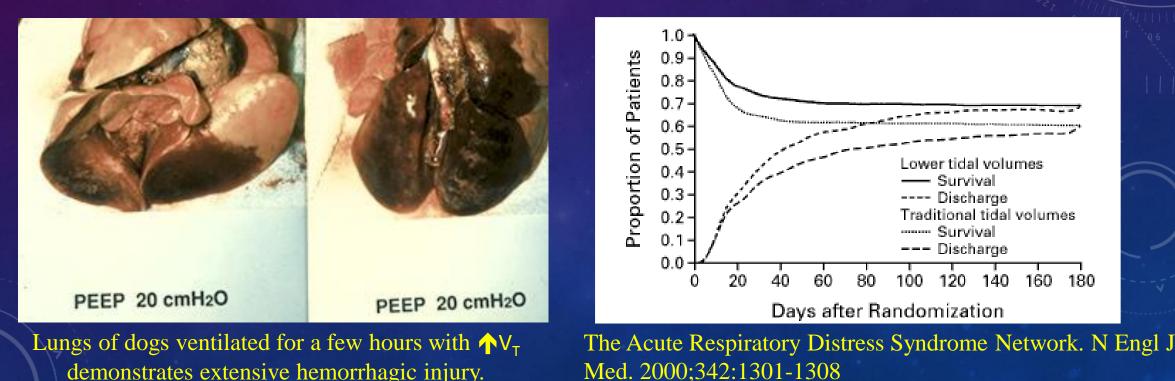
 - Shear-stress forces (Atelectrauma) produced by repetitive alveolar recruitment and derecruitment: collapse
 - Biotrauma (inflamatory mechanisims) and Barotrauma (ambient pressure changes)
- The degree of overinflation is dependent on:
 - V₇
 - Paw
 - Duration of mechanical ventilation

ADDITIONAL CONSIDERATIONS


- Arterial Blood Gas
 - Assess pH (Acidotic, Alkalotic) (7.35 7.45)
 - Determine Respiratory Involvement (PaCO2) (35 45)
 - Determine Metabolic Involvement (HCO_{3⁻}, BE) (22 26)
 - Assess for compensation (pH↑PaCO2 ↓ HCO₃⁻)
 - Metabolic Considerations (Anion Gap, Lactate)

Normal ABG is not normal in Critically III patient

- Lactate (Prognostic Value)
- Hemodynamics
- Ventilation dysynchrony


OXYHEMOGLOBIN DISSOCIATION CURVE

 Describes the non-linear tendency for oxygen to bind to hemoglobin: below a SaO2 of 90%, small differences in hemoglobin saturation reflect large changes in PaO2.

LUNG PROTECTIVE STRATEGIES

Ventilate at Ideal Body Weight (IBW) Males (kg): 50 kg + 2.3 kg for each inch over 5 ft (lb): 105 lbs + 6 lbs for each inch over 5ft. Females (kg): 45.5 kg + 2.3 kg for each inch over 5 ft (lb): 100 lbs + 5 lbs for each inch over 5ft

ARDS 2012 NETWORK

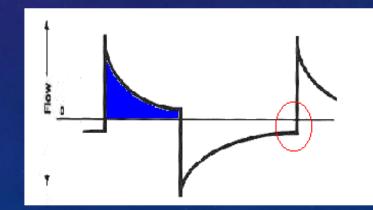
- Oxygenation Goal: PaO₂ 55-80 mmHg or SpO² 88-95%
 - PEEP-FIO₂ Combination
 - Permissive Hypercapnia
 - O_2 Index = <u>FIO2 x MAP</u>

PaO2

- P_{plat} Goal: ≤ 30 cm H²O
 - Check P_{plat} (0.5 second inspiratory pause), at least q 4h and after each change in PEEP or V_T
- pH GOAL: 7.30-7.45
- I: E Ratio Goal: Recommend that duration of inspiration be < duration of expiration

FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12

FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0 18-24
PEEP	14	14	14	16	18	


Higher PEEP/lower FiO2

FiO ₂	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5
PEEP	5	8	10	12	14	14	16	16

FiO ₂	0.5	0.5-0.8	0.8	0.9	1.0	1.0
PEEP	18	20	22	22	22	24

IMPORTANT PRINCIPLES

Intrinsic PEEP ↑ WOB and can be offset by applying external PEEP ↑ Expiratory resistance ↑ Respiratory rate Δ in Pmean Measure of the pressure applied across the lung and chest wall Arterial oxygenation Cardiac output V/Q V without Q – Dead space Q without V – Shunt

VENTILATOR LIBERATION

- Spontaneous Breathing Trial (SBT)
 - $FiO_2 \le 40\%$ and $PEEP \le 8$ OR $FiO_2 \le 50\%$ and $PEEP \le 5$
 - PEEP and $FiO_2 \le$ values of previous day
 - Systolic BP ≥ 90 mmHg without vasopressor support
 - No neuromuscular blocking agents
- Mechanics
 - RSBI (f/V_T) < 105/min/L
 - Monitor Compliance (ΔV/ΔP, Cstat, Cdyn)
 - Cstat = V_T / Pplat PEEP (inspiratory pause)
 - $Cdyn = V_T / PIP PEEP$ (active inspiration)

QUESTION #1

1) Which of the following is NOT a ventilator goal during management of ARDS

- a) PaO2 55-80
- b) pH < 7.2
- c) Plateau pressure < 30
- d) Vt 6 ml/kg of ideal body weight

QUESTION #2

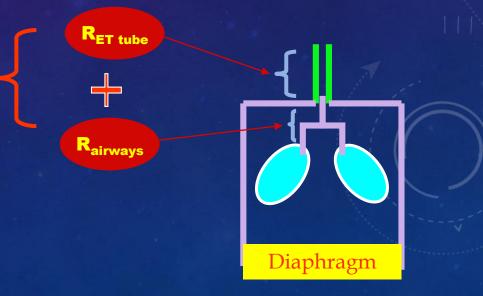
2) Which of the following is a potentially deleterious effect of mechanical ventilation

a) Respiratory muscle hypertrophy
b) Increased mucociliary motility
c) Decreased intracranial pressure
d) Reduced cardiac output

UNDERSTANDING AIRWAY PRESSURES


- The respiratory system can be thought of as a mechanical system consisting of
- resistive (airways + ETT)
- elastic (lungs and chest wall) elements in series

ET tube + Airways (resistive element)


Lungs + Chest wall (elastic element Diaphragm

Ventilator

Understanding Pressure-Time Waveforms

Pressure-time waveform is a reflection of the pressures generated within the airways during each phase of the ventilatory cycle. At the beginning of the inspiratory cycle, ventilator has to generate a pressure P_{res} to overcome the airway resistance.
 Next pressure rises in a linearly to reach P_{peak}
 At end inspiration, air flow is zero and the pressure drops by an amount equal to P_{res} to reach P_{plat}. Pressure returns to baseline during passive expiration.

