Idiopathic Pulmonary Fibrosis Diagnosis & Treatment

Kevin R. Flaherty MD, MS Professor of Medicine University of Michigan Health System Division of Pulmonary/Critical Care Medicine

Disclosure Information

 I have the following financial relationships to disclose: Consultant for: Boehringer Ingelheim, Roche/ Genentech, Veracyte, Biogen, Gilead, Pharmakea, Aeolus Speaker's Bureau for: None Grant/Research Support from: Afferent, Boehringer Ingelheim, Roche/Genentech Stockholder in: None Honoraria from: None Employee of: None

• I will not discuss off label use or investigational use in my presentation.

Outline & Objectives

- Understand the classification and diagnosis of Interstitial Lung Diseases and IPF
- Recognize typical patterns of disease on HRCT
- Discuss the potential benefits and adverse reactions of approved therapies for IPF

Distinguishing Dyspnea: IPF Prevalence

COPD: chronic obstructive pulmonary disease; IPF: idiopathic pulmonary fibrosis.

1. Raghu G et al. Resp Crit Care Med. 2006;174:810-816. 2. Go AS et al. Circulation. 2013;127:e6-e245.

3. Wheaton AG et al. MMWR Morb Mortal Wkly Rep. 2015;64:289-295.

Interstitial Lung Diseases - Difficulties

- Diverse group of disorders (130+)
- Similar symptoms, physiology, radiology
- Difficult nomenclature
- Limited, often toxic, treatments

Travis et al., Am J Resp Crit Care Med 2013; 188(6):733-48

Diagnosis Matters! IPF/UIP confers a poor prognosis

Flaherty et al. Eur Respir J. 2002;19:275-283.

Interstitial Lung Disease Diagnostic Team

Communication among multidisciplinary team members is essential for an accurate diagnosis

Clinical Tools for Diagnosis

- Raise suspicion that ILD is present
- Identify the cause of the disease
 - Infection
 - Systemic disorders
 - Exposures (eg, occupational, environment, hobby)
 - Idiopathic

Radiographic Tools for Diagnosis

Radiographic

HRCT: allows detailed evaluation of the lung parenchyma

HRCT Features

- Ground glass attenuation
- Honeycombing/cysts
- Lines/reticular thickening
- Consolidation
- Nodules
- Decreased lung attenuation

HRCT Distribution

- Upper
- Lower
- Central
- Peripheral
- Diffuse/bilateral

Histologic Tools for Diagnosis

Histology

- Bronchoscopy
- Surgical lung biopsy

UIP Pattern

- Marked fibrosis/architectural distortion ± honeycombing, predominantly subpleural/paraseptal
- Patchy fibrosis
- Fibroblastic foci
- Absence of features to suggest alternative diagnosis
- 1. Images courtesy of Steven Nathan, MD.
- 2. Raghu G et al. Am J Respir Crit Care Med. 2011;183:788-824.

Putting the Pattern in Context

Associated with connective tissue disorders

- Systemic lupus erythematosus
- Rheumatoid arthritis
- Sjogren syndrome
- Polymyositis-dermatomyositis
- Polymyalgia rheumatica
- Systemic sclerosis
- Behcet's disease
- Ankylosing spondylitis
- Mixed connective tissue disease
- Associated with immunological disorders
 - Common variable immunodeficiency syndrome
 - Essential mixed cryoglobulinemia
- Associated with infectious disease

Bacterial

- Streptococcus pneumoniae
- Legionella pneumophila
- Mycoplasma pneumoniae
- Coxiella burnetti
- Nocardia asteroides
- Chlamydia pneumoniae
- Staphylococcus aureus

Viral

- Adenovirus
- Cytomegalovirus
- Influenza and parainfluenza
- Human immunodeficiency virus
- Herpes virus
- Fungal
 - Cryptococcus neoformans
 - Pneumocystis jiroveci
- Parasites
 - Plasmodium vivax
- Associated with aspiration pneumonia Associated with radiation therapy for breast cancer Associated with organ transplantation
- Bone marrow
- Lung
- Renal
- Liver

Drug-related (see Table 2) Miscellaneous

- Inflammatory bowel disease
- Primary biliary cirrhosis
- Polyarteritis nodosa
- Chronic thyroiditis
- Hematological malignancies (myelodysplastic syndrome, T-cell leukemia, lymphoma)
- Coronary artery bypass graft surgery
- Environmental exposure (textile printing dye, house fire, cocaine abuse)
- Sweet's syndrome

Causes of OP

Table 2. Drug-Associated OP

Most common:

- Amiodarone, bleomycin, carbamazepine, interferon-a, -b, gold salts
- Less common:
 - Acebutolol, doxorubicin, mesalamine, sulphasalazine, nitrofurantoin, sirolimus
- Rare:
 - Amphotericin B, bucillamine, busulfan, chlorambucil, cefradin, erlotinib, fluvastatin, L-tryptophan, minocycline, nilutamide, phenytoin, risedronate, rituximab, tacrolimus, temozolomide, thalidomide, ticlopidine, trastuzumab, vinbarbital

Adapted from Pneumotox (www.pneumotox.com).

Drakopanagiotakis et al, Am J Med Sci 2008;335:34-9

High Resolution Computed Tomography

- Does NOT use contrast
- Thin collimation
 - HRCT, approximately 1mm slice thickness
 - MDCT (contiguous slices) preferred
 - Close tracking of subtle parenchymal and airway abnormalities
 - Avoids missing small/subtle abnormalities
- Should use Low Dose (~80 mA)
- Reconstruction with specific Windows
- Inspiration, Expiration, and prone images

High Resolution Computed Tomography

- Examines the entire lungs
 - Avoids sampling error (like surgical biopsy)
 - Can visualize mixed disease patterns
- Expiratory images add physiologic element
- Key Limitation is resolution
 - Ground Glass may be inflammation, fibrosis, infection, water, blood, etc.
 - Microscopic honeycomb change
 - Histopathologic features

Impact of Thickness & Algorithm

CT 10-mm standard algorithm HRCT 1.5-mm high resolution algorithm

HRCT Pitfalls

- Dependent atelectasis mimics ground glass opacity
 - More common in smokers and with increased age
 - Always do prone images

Dependent Opacity: Normal

supine

prone

Dependent Opacity: Disease

supine

prone

Normal HRCT

- Clear 1 cm periphery
- Few interlobular septa
- Should see no airways in the peripheral 1/3 of the lungs; bronchioles not visible
- Dependent opacity

Mosaic Attenuation

(aka mosaic perfusion)

- wedge-shaped areas of alternating attenuation
- altered perfusion
 - » pulmonary emboli
- altered ventilation
 - » air-trapping
 - » small airway disease
- patchy ground glass (ILD)

Inspiratory/ Expiratory HRCT

inspiration

expiration

Emphysema vs. Cyst

Ground Glass

- Hazy opacity you can see through
 - Less opaque than consolidtion
 - Able to see bronchial & vascular markings
- Partial filling of airspaces
 - Fluid (water, blood)
 - Infection
 - Fibrosis

Honeycombing

- Clustered cystic air spaces
- Well defined walls
- Usually comparable diameter (3-10mm)
- Usually subpleural
- Can be confused with traction bronciectasis

Respiratory Bronchiolitis / ILD

- Ill defined centrilobular nodules
- Ground Glass
- Decreased lobular attenuation
- Distribution:
- mid/upper lungs

Langerhans Histiocytosis (aka EG)

- Numerous cysts (often bizarre shapes
- Peribronchiolar nodules
- Interstitial changes/scar
 Distribution:
- Upper lobe
- Progression:
- Nodules → cavitary nodules
 → cysts → confluent cysts

Sarcoidosis

- Nodules
- Confluent alveolar spaces
- Distortion, fibrosis, cysts Distribution:
- Upper lobe
- Central/bronchovascular

Lymphangioleiomyomatosis

- Numerous thin-walled cysts
- No nodules or fibrosis Distribution:
- Diffuse, no predominance

Lymphangioleiomyomatosis

Hypersensitivity Pneumonitis

- Ground Glass
- Mosaic attenuation
- Peribronchiolar thickening
 Distribution:
- Upper / Diffuse

50 year old male with Hypersensitivity Pneumonia – Treated with removal of doves and immunosuppression

	06/18/13	06/20/16
FEV1 (% pred)	1.95 (50%)	2.93 (78%)
FVC (% pred)	2.04 (38%)	3.22 (61%)
DLCO (% pred)	12.25 (38%)	25.22 (81%)

04/05/13

Hypersensitivity Pneumonitis - Chronic

Nonspecific interstitial pneumonia

- Reticulation
- Traction Bronchiectasis
- Ground Glass
- Honeycomb rare (5%) Distribution:
- Lower
- Peripheral / Diffuse

Updated Consensus Statement for Diagnosis of IPF

The diagnosis of IPF requires:

- 1. Exclusion of other known causes of interstitial lung disease
- 2. Presence of UIP pattern on HRCT (in patients without surgical biopsy)
- 3. A HRCT pattern of definite/possible UIP with a Surgical lung biopsy showing Definite/Probable UIP

The Major and Minor Criteria proposed in the 2000 ATS/ERS Consensus Statement were Eliminated

Raghu et al., Am J Respir Crit Care Med 2011; 183:788-24

Role of HRCT in Diagnosing UIP

UIP Pattern (All 4 Features)	Possible UIP (All 3 Features)	Inconsistent With UIP (Any)
 Subpleural, basal predominance Reticular abnormality Honeycombing with/without traction bronchiectasis 	 Subpleural, basal predominance Reticular abnormality Absence of features listed as inconsistent with UIP (column 3) 	 Upper or mid-lung predominance Peribronchovascular predominance Extensive ground glass abnormality (extent > reticular abnormality) Profuse micronodules (bilateral, medominanthe service)
 Absence of features listed as inconsistent with UIP (column 3) 		 predominantly upper lobe) Discrete cysts (multiple, bilateral, away from areas of honeycombing) Diffuse mosaic attenuation/ air-trapping (bilateral, in ≥3 lobes) Consolidation in bronchopulmonary segment(s)/lobe(s)

Raghu G et al. Am J Respir Crit Care Med. 2011;183:788-824.
Usual Interstitial Pneumonia

Pattern:

- irregular septal lines & honeycombing
- ground glass opacity (not predominant)
- traction bronchiectasis
 Distribution:
- lower > upper lung
- subpleural distribution

Radiology (HRCT) Diagnosis of IPF/UIP Versus NSIP

Consecutive patients with UIP or NSIP n = 96

Flaherty K, et al. Thorax. 2003;58:143-148.

Emphysema + IPF/UIP

FVC	3.63 (89%)	
FEV ₁	2.74 (102%)	
FEV ₁ /FVC	115%	
RV	2.67 (113%)	
TLC	6.30 (98%)	
DL _{co}	11.90 (48%)	

UIP: Irregular Reticular Opacities

Courtesy of W. Richard Webb, MD.

Early HRCT Findings in IPF

Histologic Tools for Diagnosis

Histology

- Bronchoscopy
- Surgical lung biopsy

UIP Pattern

- Marked fibrosis/architectural distortion ± honeycombing, predominantly subpleural/paraseptal
- Patchy fibrosis
- Fibroblastic foci
- Absence of features to suggest alternative diagnosis
- 1. Images courtesy of Steven Nathan, MD.
- 2. Raghu G et al. Am J Respir Crit Care Med. 2011;183:788-824.

Idiopathic Pulmonary Fibrosis

A specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs.

It is characterized by progressive worsening of dyspnea and lung function and is associated with a poor prognosis.

Raghu et al., Am J Respir Crit Care Med 2011; 183:788-24

Having a Conversation With the Patient Newly Diagnosed With IPF

- Spend adequate time to explain the prognosis and assess patient's preferences and values
- Burden and morbidity of IPF can be emotionally overwhelming and will likely impact family members as well
- Each individual patient with IPF is different; consider physiology, exercise tolerance, radiology, and pathology when choosing a course of treatment
- Patients who are at increased risk of mortality should be referred for lung transplantation early in the course

2015 Treatment Recommendations for IPF

Strong Recommendation Against Use:

Anticoagulation (warfarin), Pred/Aza/NAC, ambrisentan, Imatinib

Conditional Recommendation for Use:

Nintedanib, pirfenidone, GERD

Conditional Recommendation Against Use:

NAC, macitentan, bosentan, sildenafil

Raghu, et al. Am J Respir Crit Care Med 2015;192:e3-19

High Dose Acetylcysteine in Idiopathic Pulmonary Fibrosis

 $\frac{\text{Mortality}}{\text{NAC} = 9\%}$ Placebo = 11% p=0.69

Figure 2. Vital Capacity and Single-Breath Carbon Monoxide Diffusing Capacity (DL_{co}) at 6 and 12 Months, as Compared with Baseline.

Demedts et al; NEJM 2005;353:2229-42

PANTHER

Prednisone-Azathioprine-N-acetyl cysteine: A Trial THat Evaluates Responses in IPF

Diagnosis of IPF with FVC ≥ 50%, DLCO ≥ 30% predicted

Three arms

- Placebo
- N-acetyl cysteine
- Pred/aza/NAC

Primary Endpoint – Change in FVC over 60wks

Prednisone, Azathioprine, and N-Acetylcysteine for Pulmonary Fibrosis

The Idiopathic Pulmonary Fibrosis Clinical Research Network*

- Interim Analysis with 50% data
 - Combination n = 77, Placebo n= 78
 - Increased Death 8 vs 1, p=0.01
 - Increased Hosp 23 v 7, p<0.001
 - No physio/clinical benefit
- Termination of combination therapy at mean of 32 weeks
- Recommendation against use of pred/azthioprine/N-acetyl cysteine

Raghu et al. N Engl J Med 2012; 366:1968-71

NAC Does Not Reduce FVC Decline

Martinez FJ, et al. N Engl J Med. 2014;370(22):2093-2101.

2015 Treatment Recommendations for IPF

Strong Recommendation Against Use:

Anticoagulation (warfarin), Pred/Aza/NAC, ambrisentan, Imatinib

Conditional Recommendation for Use:

Nintedanib, pirfenidone, GERD

Conditional Recommendation Against Use:

NAC, macitentan, bosentan, sildenafil

Raghu, et al. Am J Respir Crit Care Med 2015;192:e3-19

Nintedanib: INPULSIS-1 and INPULSIS-2 Trial Design

Richeldi L et al. N Engl J Med. 2014;370:2071-2082.

INPULSIS Primary Endpoint: Adjusted Annual Rate of Decline in FVC

Richeldi L et al. N Engl J Med. 2014;370:2071-2082.

INPULSIS: Time to First Investigator-Reported Acute Exacerbation

INPULSIS-1

Richeldi L et al. N Engl J Med. 2014;370:2071-2082.

Day

360 373

Nintedanib – Time to First Exacerbation Statified by FVC +/- 70% predicted

Costabel, et al. Am J Respir Crit Care Med 2015; epub

Nintedanib – Safety & Tolerability

	Nintedanib (n=638)	Placebo (n=423)	
Dose Reduction*	178 (28%)	16 (4%)	
Treatment Interruptions*	151 (24%)	42 (10%)	
	Incidence/Discontinue	Incidence/Discontinue	
Diarrhea	63% / 4.4%	18% / 0.2%	
Nausea	25% / 2.0%	7% / 0%	
	Mild/Mod/Severe (%)	Mild/Mod/Severe (%)	
Diarrhea	57 / 38 / 5	77 / 20 / 3	
Nausea	74 / 24 / 2	93 / 7 / 0	

* No particular time

Approved October 15, 2014, for the treatment of IPF

Liver function tests required prior to treatment and should be evaluated every 3 months in first year

Dosage and administration

- 150 mg twice daily with food
- Take each dose approximately 12 h apart

Adverse reactions? Consider temporary dose reduction to 100 mg, temporary interruption, or discontinuation

Pirfenidone: ASCEND Trial Design

ASCEND: Primary Efficacy Analysis

< .001

< .001

< .001

ANCOVA: analysis of covariance. King TE Jr et al. *N Engl J Med*. 2014;370:2083-2092.

< .001

Rank ANCOVA P

Pirfenidone: Meta Analysis

Table 2. Summary of finding form Pirfenidone for idiopathic pulmonary fibrosis.

Outcomes	Outcomes Anticipate absolute effects (Study population) (95% CI)		Relative Effect	NO of participants	Quality of the evidence (GRADE)
	Risk with placebo	Risk with Pirfenidone			
All cause-mortality	67 per 1000	36 per 1000 (22 to 59)	RR 0.53 (0.32 to 0.88)	1247 (3 RCTs)	⊕⊕⊕⊖ MODERATE1
Progression free-survival	442 per 1000	372 per 1000 (332 to 416)	RR 0.83 (0.75 to 0.94)	728 (3 RCTs)	⊕⊕⊕⊖ MODERATE1
Acute exacerbation	26 per 1000	15 per 1000 (5 to 47)	RR 0.59 (0.19 to 1.84)	235 (2 RCTs)	⊕⊕⊖⊖ LOW1,2
Worsening of IPF	168 per 1000	107 per 1000 (84 to 139)	RR 0.64 (0.50 to 0.83)	1615 (5 RCTs)	⊕⊕⊕⊖ MODERATE1
Change on 6MWT	417 per 1000	308 per 1000 (267 to 358)	RR 0.74 (0.64 to 0.86)	1236 (3 RCTs)	⊕⊕⊕⊕ HIGH
Change on aminotransferases	30 per 1000	68 per 1000 (40 to 115)	RR 2.26 (1.33 to 3.83)	764 (5 RCTs)	⊕⊕⊕⊖ MODERATE1

1: Non primary outcome from RCTs, 2: High heterogeneity; 6MWT: Six minutes walk test; RCT: Randomized controlled trial; RR: Risk ratio; CI: confidence interval.

ASCEND: Treatment-Emergent Adverse Events more common in pirfenidone group

- Nausea (36% vs 13%)
- Rash (28% vs 9%)
- Adverse events (AEs) generally mild to moderate severity, reversible, and without clinically significant sequelae

King TE Jr et al. N Engl J Med. 2014;370:2083-2092.

Approved October 15, 2014, for the treatment of IPF

Liver function tests required prior to treatment and should be evaluated every 3 months in first year

Dosage and administration

801 mg 3x daily with food (three 267-mg capsules per dose)

Take each dose at the same time each day

Initiate with titration

Days 1-7: one capsule 3x daily Days 8-14: two capsules 3x daily Days 15 onward: three capsules 3x daily

Adverse reactions? Consider temporary dosage reduction, treatment interruption, or discontinuation

Gastroesophageal reflux (GERD) in IPF

- GER is highly prevalent in patients with IPF
- Observational study (n = 204); 47% received GER medical therapy, and 5% surgical

Lee JS, et al. Am J Respir Crit Care Med. 2011;184:1390-1394.

Engaging in a Shared Decision-Making Process

- Discuss the efficacy and safety of FDA-approved therapies
- Listen to patient's preferences and concerns
- Focus on symptom control and management of comorbidities
- Set treatment expectations
- Look at the option of lung transplantation

IPF - Acute Exacerbations

- Incidence of 4-24% / 100 IPF person years
- Triggers Infections, Mechanical, GERD, other
- Prognosis
 - 46% of IPF mortality due to AE-IPF
 - Median survival after AE-IPF 3-4 months
- Risk Factors
 - Advanced disease (primarily FVC)
 - Younger age
 - Co-morbid Coronary Artery Disease
 - Increased BMI

IPF - Acute Exacerbations (overlap with ALI)

Collard, et al. Am J Respir Crit Care Med. 2016;194:265-75

IPF - Acute Exacerbation Definition

Collard, et al. Am J Respir Crit Care Med. 2016;194:265-75

IPF - Acute Exacerbation Treatment

<u>No proven effective therapy</u>

- Weak recommendation for use of steroids
 - High value on anecdotal reports
- Supportive Care Oxygen, palliation of symptoms
- Recommendation against mechanical ventilation
- Case reports / series of numerous agents
 - Cyclosporin / Tacrolimus
 - Cyclophosphamide
 - Rituximab + Plasma Exchange + IVIG
 - IV Thrombomodulin
 - Polymyxin-B hemoperfusion

Members of the IPF Care Team

- Multidisciplinary Team of Physicians
 - Pulmonary, Radiology, Pathology, Rheumatology, Cardiology, Thoracic Surgery, Lung Transplant
- Social Work
- Clinical Nurse Specialist
- Palliative Care
- Students/Residents/Fellows
- Research Coordinator
- Support Group

Supportive Care for Patients With IPF

Lung Transplantation for Pulmonary Fibrosis: Referral and Listing Guidelines

Referral

- Diagnosis of IPF (histologic or radiographic)
- Diagnosis of fibrotic NSIP (histologic)

Transplantation

- DL_{co} < 39% predicted
- Decline in FVC by \geq 10% over 6 months
- Oxyhemoglobin saturation < 88% with 6MWT
- Honeycombing on HRCT
- Histologic evidence of NSIP and
 - DL_{co} < 35% predicted
 - Decline in FVC of \geq 10% over 6 months
 - Decline in DL_{CO} of \geq 15% over 6 months

Pulmonary Fibrosis FOUNDATION www.pulmonaryfibrosis.org Life with PF Education & Support Our Role Information & Programs Oct Involved Information & Programs Oct Involved Events & Awareness Oct Involved Events & Awareness Oct Involved Events & Awareness Oct Involved Information & Programs Oct Involved Events & Awareness Oct Involved Information & Programs Oct Involved Events & Awareness Oct Involved Information & Programs Oct Involved Information & Programs

Serving the PF Community Call 844. TalkPFF (844.825.5733) to speak with a representative today. LEARN MOI

Pu

We Imagine a World Without Pulmonary Fibrosis